Show commands:
Magma
magma: G := TransitiveGroup(14, 30);
Group action invariants
Degree $n$: | $14$ | magma: t, n := TransitiveGroupIdentification(G); n;
| |
Transitive number $t$: | $30$ | magma: t, n := TransitiveGroupIdentification(G); t;
| |
Group: | $\PSL(2,13)$ | ||
CHM label: | $L(14)=PSL(2,13)$ | ||
Parity: | $1$ | magma: IsEven(G);
| |
Primitive: | yes | magma: IsPrimitive(G);
| magma: NilpotencyClass(G);
|
$\card{\Aut(F/K)}$: | $1$ | magma: Order(Centralizer(SymmetricGroup(n), G));
| |
Generators: | (1,12)(2,6)(3,4)(7,11)(9,10)(13,14), (1,4,3,12,9,10)(2,8,6,11,5,7), (1,2,3,4,5,6,7,8,9,10,11,12,14) | magma: Generators(G);
|
Low degree resolvents
noneResolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 7: None
Low degree siblings
28T120, 42T176Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{14}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{6},1^{2}$ | $91$ | $2$ | $6$ | $( 1, 3)( 2, 8)( 5,11)( 6, 7)(10,12)(13,14)$ |
3A | $3^{4},1^{2}$ | $182$ | $3$ | $8$ | $( 1, 4, 2)( 5,14, 8)( 6, 7,13)( 9,12,11)$ |
6A | $6^{2},1^{2}$ | $182$ | $6$ | $10$ | $( 1, 6,10, 3, 7,12)( 2, 5,14, 8,11,13)$ |
7A1 | $7^{2}$ | $156$ | $7$ | $12$ | $( 1,12, 3, 5,14, 8,10)( 2, 7, 6,11, 4,13, 9)$ |
7A2 | $7^{2}$ | $156$ | $7$ | $12$ | $( 1, 3,14,10,12, 5, 8)( 2, 6, 4, 9, 7,11,13)$ |
7A3 | $7^{2}$ | $156$ | $7$ | $12$ | $( 1, 5,10, 3, 8,12,14)( 2,11, 9, 6,13, 7, 4)$ |
13A1 | $13,1$ | $84$ | $13$ | $12$ | $( 1, 9, 4,12, 7, 2,10, 5,14, 8, 3,11, 6)$ |
13A2 | $13,1$ | $84$ | $13$ | $12$ | $( 1, 4, 7,10,14, 3, 6, 9,12, 2, 5, 8,11)$ |
Malle's constant $a(G)$: $1/6$
magma: ConjugacyClasses(G);
Group invariants
Order: | $1092=2^{2} \cdot 3 \cdot 7 \cdot 13$ | magma: Order(G);
| |
Cyclic: | no | magma: IsCyclic(G);
| |
Abelian: | no | magma: IsAbelian(G);
| |
Solvable: | no | magma: IsSolvable(G);
| |
Nilpotency class: | not nilpotent | ||
Label: | 1092.25 | magma: IdentifyGroup(G);
| |
Character table: |
1A | 2A | 3A | 6A | 7A1 | 7A2 | 7A3 | 13A1 | 13A2 | ||
Size | 1 | 91 | 182 | 182 | 156 | 156 | 156 | 84 | 84 | |
2 P | 1A | 1A | 3A | 3A | 7A2 | 7A3 | 7A1 | 13A2 | 13A1 | |
3 P | 1A | 2A | 1A | 2A | 7A3 | 7A1 | 7A2 | 13A1 | 13A2 | |
7 P | 1A | 2A | 3A | 6A | 1A | 1A | 1A | 13A2 | 13A1 | |
13 P | 1A | 2A | 3A | 6A | 7A1 | 7A2 | 7A3 | 1A | 1A | |
Type | ||||||||||
1092.25.1a | R | |||||||||
1092.25.7a1 | R | |||||||||
1092.25.7a2 | R | |||||||||
1092.25.12a1 | R | |||||||||
1092.25.12a2 | R | |||||||||
1092.25.12a3 | R | |||||||||
1092.25.13a | R | |||||||||
1092.25.14a | R | |||||||||
1092.25.14b | R |
magma: CharacterTable(G);