Group action invariants
| Degree $n$ : | $14$ | |
| Transitive number $t$ : | $30$ | |
| Group : | $\PSL(2,13)$ | |
| CHM label : | $L(14)=PSL(2,13)$ | |
| Parity: | $1$ | |
| Primitive: | Yes | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,12)(2,6)(3,4)(7,11)(9,10)(13,14), (1,4,3,12,9,10)(2,8,6,11,5,7), (1,2,3,4,5,6,7,8,9,10,11,12,14) | |
| $|\Aut(F/K)|$: | $1$ |
Low degree resolvents
NoneResolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 7: None
Low degree siblings
28T120, 42T176Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 7, 7 $ | $156$ | $7$ | $( 1,11,14, 5,13, 7,12)( 2, 8, 6, 4,10, 9, 3)$ |
| $ 7, 7 $ | $156$ | $7$ | $( 1,13,11, 7,14,12, 5)( 2,10, 8, 9, 6, 3, 4)$ |
| $ 7, 7 $ | $156$ | $7$ | $( 1,14,13,12,11, 5, 7)( 2, 6,10, 3, 8, 4, 9)$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1 $ | $91$ | $2$ | $( 1, 7)( 2, 6)( 3, 5)( 8,14)( 9,12)(10,11)$ |
| $ 3, 3, 3, 3, 1, 1 $ | $182$ | $3$ | $( 1, 8, 3)( 2,11,12)( 5, 7,14)( 6,10, 9)$ |
| $ 6, 6, 1, 1 $ | $182$ | $6$ | $( 1, 5, 8, 7, 3,14)( 2, 9,11, 6,12,10)$ |
| $ 13, 1 $ | $84$ | $13$ | $( 1, 4, 8,11, 9,10,12, 5,13, 7,14, 2, 3)$ |
| $ 13, 1 $ | $84$ | $13$ | $( 1,13,11, 2,12, 4, 7, 9, 3, 5, 8,14,10)$ |
Group invariants
| Order: | $1092=2^{2} \cdot 3 \cdot 7 \cdot 13$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | No | |
| GAP id: | [1092, 25] |
| Character table: |
2 2 . . . 2 1 1 . .
3 1 . . . 1 1 1 . .
7 1 1 1 1 . . . . .
13 1 . . . . . . 1 1
1a 7a 7b 7c 2a 3a 6a 13a 13b
2P 1a 7c 7a 7b 1a 3a 3a 13b 13a
3P 1a 7b 7c 7a 2a 1a 2a 13a 13b
5P 1a 7c 7a 7b 2a 3a 6a 13b 13a
7P 1a 1a 1a 1a 2a 3a 6a 13b 13a
11P 1a 7b 7c 7a 2a 3a 6a 13b 13a
13P 1a 7a 7b 7c 2a 3a 6a 1a 1a
X.1 1 1 1 1 1 1 1 1 1
X.2 7 . . . -1 1 -1 D *D
X.3 7 . . . -1 1 -1 *D D
X.4 12 A B C . . . -1 -1
X.5 12 B C A . . . -1 -1
X.6 12 C A B . . . -1 -1
X.7 13 -1 -1 -1 1 1 1 . .
X.8 14 . . . 2 -1 -1 1 1
X.9 14 . . . -2 -1 1 1 1
A = -E(7)^3-E(7)^4
B = -E(7)^2-E(7)^5
C = -E(7)-E(7)^6
D = -E(13)-E(13)^3-E(13)^4-E(13)^9-E(13)^10-E(13)^12
= (1-Sqrt(13))/2 = -b13
|