Show commands: Magma
Group invariants
Abstract group: | $F_8$ |
| |
Order: | $56=2^{3} \cdot 7$ |
| |
Cyclic: | no |
| |
Abelian: | no |
| |
Solvable: | yes |
| |
Nilpotency class: | not nilpotent |
|
Group action invariants
Degree $n$: | $14$ |
| |
Transitive number $t$: | $6$ |
| |
CHM label: | $[2^{3}]7$ | ||
Parity: | $1$ |
| |
Primitive: | no |
| |
$\card{\Aut(F/K)}$: | $2$ |
| |
Generators: | $(3,10)(5,12)(6,13)(7,14)$, $(1,3,5,7,9,11,13)(2,4,6,8,10,12,14)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $7$: $C_7$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 7: $C_7$
Low degree siblings
8T25, 28T11Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{14}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{4},1^{6}$ | $7$ | $2$ | $4$ | $( 3,10)( 5,12)( 6,13)( 7,14)$ |
7A1 | $7^{2}$ | $8$ | $7$ | $12$ | $( 1, 6, 4, 9, 7, 5,10)( 2,14,12, 3, 8,13,11)$ |
7A-1 | $7^{2}$ | $8$ | $7$ | $12$ | $( 1,10, 5, 7, 9, 4, 6)( 2,11,13, 8, 3,12,14)$ |
7A2 | $7^{2}$ | $8$ | $7$ | $12$ | $( 1, 4, 7,10, 6, 9, 5)( 2,12, 8,11,14, 3,13)$ |
7A-2 | $7^{2}$ | $8$ | $7$ | $12$ | $( 1, 5, 9, 6,10, 7, 4)( 2,13, 3,14,11, 8,12)$ |
7A3 | $7^{2}$ | $8$ | $7$ | $12$ | $( 1, 9,10, 4, 5, 6, 7)( 2, 3,11,12,13,14, 8)$ |
7A-3 | $7^{2}$ | $8$ | $7$ | $12$ | $( 1, 7, 6, 5, 4,10, 9)( 2, 8,14,13,12,11, 3)$ |
Malle's constant $a(G)$: $1/4$
Character table
1A | 2A | 7A1 | 7A-1 | 7A2 | 7A-2 | 7A3 | 7A-3 | ||
Size | 1 | 7 | 8 | 8 | 8 | 8 | 8 | 8 | |
2 P | 1A | 1A | 7A2 | 7A-2 | 7A-3 | 7A3 | 7A-1 | 7A1 | |
7 P | 1A | 2A | 7A3 | 7A-3 | 7A-1 | 7A1 | 7A2 | 7A-2 | |
Type | |||||||||
56.11.1a | R | ||||||||
56.11.1b1 | C | ||||||||
56.11.1b2 | C | ||||||||
56.11.1b3 | C | ||||||||
56.11.1b4 | C | ||||||||
56.11.1b5 | C | ||||||||
56.11.1b6 | C | ||||||||
56.11.7a | R |
Regular extensions
Data not computed