Group action invariants
| Degree $n$ : | $14$ | |
| Transitive number $t$ : | $6$ | |
| Group : | $F_8$ | |
| CHM label : | $[2^{3}]7$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (3,10)(5,12)(6,13)(7,14), (1,3,5,7,9,11,13)(2,4,6,8,10,12,14) | |
| $|\Aut(F/K)|$: | $2$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 7: $C_7$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 7: $C_7$
Low degree siblings
8T25, 28T11Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1 $ | $7$ | $2$ | $( 3,10)( 5,12)( 6,13)( 7,14)$ |
| $ 7, 7 $ | $8$ | $7$ | $( 1, 2, 3, 4,12, 6, 7)( 5,13,14, 8, 9,10,11)$ |
| $ 7, 7 $ | $8$ | $7$ | $( 1, 3, 5, 7, 9,11,13)( 2, 4, 6, 8,10,12,14)$ |
| $ 7, 7 $ | $8$ | $7$ | $( 1, 4,14,10,13, 2, 5)( 3, 6, 9,12, 8,11, 7)$ |
| $ 7, 7 $ | $8$ | $7$ | $( 1, 5, 9,13, 3, 7,11)( 2, 6,10,14, 4, 8,12)$ |
| $ 7, 7 $ | $8$ | $7$ | $( 1, 6, 4, 2, 7,12, 3)( 5,10, 8,13,11, 9,14)$ |
| $ 7, 7 $ | $8$ | $7$ | $( 1, 7, 6,12, 4, 3, 2)( 5,11,10, 9, 8,14,13)$ |
Group invariants
| Order: | $56=2^{3} \cdot 7$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [56, 11] |
| Character table: |
2 3 3 . . . . . .
7 1 . 1 1 1 1 1 1
1a 2a 7a 7b 7c 7d 7e 7f
2P 1a 1a 7b 7d 7f 7a 7c 7e
3P 1a 2a 7c 7f 7b 7e 7a 7d
5P 1a 2a 7e 7c 7a 7f 7d 7b
7P 1a 2a 1a 1a 1a 1a 1a 1a
X.1 1 1 1 1 1 1 1 1
X.2 1 1 A B C /C /B /A
X.3 1 1 B /C /A A C /B
X.4 1 1 C /A B /B A /C
X.5 1 1 /C A /B B /A C
X.6 1 1 /B C A /A /C B
X.7 1 1 /A /B /C C B A
X.8 7 -1 . . . . . .
A = E(7)^6
B = E(7)^5
C = E(7)^4
|