Group action invariants
| Degree $n$ : | $14$ | |
| Transitive number $t$ : | $2$ | |
| Group : | $D_{7}$ | |
| CHM label : | $D_{14}(14)=[7]2$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,12)(2,11)(3,10)(4,9)(5,8)(6,7)(13,14), (1,3,5,7,9,11,13)(2,4,6,8,10,12,14) | |
| $|\Aut(F/K)|$: | $14$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 7: $D_{7}$
Low degree siblings
7T2Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 2, 2, 2 $ | $7$ | $2$ | $( 1, 2)( 3,14)( 4,13)( 5,12)( 6,11)( 7,10)( 8, 9)$ |
| $ 7, 7 $ | $2$ | $7$ | $( 1, 3, 5, 7, 9,11,13)( 2, 4, 6, 8,10,12,14)$ |
| $ 7, 7 $ | $2$ | $7$ | $( 1, 5, 9,13, 3, 7,11)( 2, 6,10,14, 4, 8,12)$ |
| $ 7, 7 $ | $2$ | $7$ | $( 1, 7,13, 5,11, 3, 9)( 2, 8,14, 6,12, 4,10)$ |
Group invariants
| Order: | $14=2 \cdot 7$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [14, 1] |
| Character table: |
2 1 1 . . .
7 1 . 1 1 1
1a 2a 7a 7b 7c
2P 1a 1a 7b 7c 7a
3P 1a 2a 7c 7a 7b
5P 1a 2a 7b 7c 7a
7P 1a 2a 1a 1a 1a
X.1 1 1 1 1 1
X.2 1 -1 1 1 1
X.3 2 . A B C
X.4 2 . B C A
X.5 2 . C A B
A = E(7)+E(7)^6
B = E(7)^2+E(7)^5
C = E(7)^3+E(7)^4
|