Show commands: Magma
Group invariants
| Abstract group: | $F_7 \times C_2$ |
| |
| Order: | $84=2^{2} \cdot 3 \cdot 7$ |
| |
| Cyclic: | no |
| |
| Abelian: | no |
| |
| Solvable: | yes |
| |
| Nilpotency class: | not nilpotent |
|
Group action invariants
| Degree $n$: | $14$ |
| |
| Transitive number $t$: | $7$ |
| |
| CHM label: | $F_{42}(7)[x]2$ | ||
| Parity: | $-1$ |
| |
| Primitive: | no |
| |
| $\card{\Aut(F/K)}$: | $2$ |
| |
| Generators: | $(1,9,11)(2,4,8)(3,13,5)(6,12,10)$, $(1,8)(2,9)(3,10)(4,11)(5,12)(6,13)(7,14)$, $(1,13)(2,12)(3,11)(4,10)(5,9)(6,8)$, $(1,3,5,7,9,11,13)(2,4,6,8,10,12,14)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 3 $3$: $C_3$ $4$: $C_2^2$ $6$: $C_6$ x 3 $12$: $C_6\times C_2$ $42$: $F_7$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 7: $F_7$
Low degree siblings
14T7, 28T15, 42T10 x 2Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
| Label | Cycle Type | Size | Order | Index | Representative |
| 1A | $1^{14}$ | $1$ | $1$ | $0$ | $()$ |
| 2A | $2^{7}$ | $1$ | $2$ | $7$ | $( 1, 8)( 2, 9)( 3,10)( 4,11)( 5,12)( 6,13)( 7,14)$ |
| 2B | $2^{6},1^{2}$ | $7$ | $2$ | $6$ | $( 1,13)( 2,12)( 3,11)( 4,10)( 5, 9)( 6, 8)$ |
| 2C | $2^{7}$ | $7$ | $2$ | $7$ | $( 1,14)( 2,13)( 3,12)( 4,11)( 5,10)( 6, 9)( 7, 8)$ |
| 3A1 | $3^{4},1^{2}$ | $7$ | $3$ | $8$ | $( 1, 9,11)( 2, 4, 8)( 3,13, 5)( 6,12,10)$ |
| 3A-1 | $3^{4},1^{2}$ | $7$ | $3$ | $8$ | $( 1,11, 9)( 2, 8, 4)( 3, 5,13)( 6,10,12)$ |
| 6A1 | $6^{2},1^{2}$ | $7$ | $6$ | $10$ | $( 1, 3, 9,13,11, 5)( 2, 6, 4,12, 8,10)$ |
| 6A-1 | $6^{2},1^{2}$ | $7$ | $6$ | $10$ | $( 1, 5,11,13, 9, 3)( 2,10, 8,12, 4, 6)$ |
| 6B1 | $6^{2},2$ | $7$ | $6$ | $11$ | $( 1, 8)( 2, 3,12, 9,10, 5)( 4, 7, 6,11,14,13)$ |
| 6B-1 | $6^{2},2$ | $7$ | $6$ | $11$ | $( 1,10,11, 8, 3, 4)( 2, 7, 6, 9,14,13)( 5,12)$ |
| 6C1 | $6^{2},2$ | $7$ | $6$ | $11$ | $( 1, 2, 5,14,13,10)( 3, 8, 9,12, 7, 6)( 4,11)$ |
| 6C-1 | $6^{2},2$ | $7$ | $6$ | $11$ | $( 1, 4, 5,10, 7, 6)( 2, 9)( 3,14,13, 8,11,12)$ |
| 7A | $7^{2}$ | $6$ | $7$ | $12$ | $( 1,13,11, 9, 7, 5, 3)( 2,14,12,10, 8, 6, 4)$ |
| 14A | $14$ | $6$ | $14$ | $13$ | $( 1,14,13,12,11,10, 9, 8, 7, 6, 5, 4, 3, 2)$ |
Malle's constant $a(G)$: $1/6$
Character table
| 1A | 2A | 2B | 2C | 3A1 | 3A-1 | 6A1 | 6A-1 | 6B1 | 6B-1 | 6C1 | 6C-1 | 7A | 14A | ||
| Size | 1 | 1 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 6 | 6 | |
| 2 P | 1A | 1A | 1A | 1A | 3A-1 | 3A1 | 3A1 | 3A-1 | 3A-1 | 3A1 | 3A1 | 3A-1 | 7A | 7A | |
| 3 P | 1A | 2A | 2B | 2C | 1A | 1A | 2B | 2B | 2A | 2A | 2C | 2C | 7A | 14A | |
| 7 P | 1A | 2A | 2B | 2C | 3A1 | 3A-1 | 6A1 | 6A-1 | 6B1 | 6B-1 | 6C1 | 6C-1 | 1A | 2A | |
| Type | |||||||||||||||
| 84.7.1a | R | ||||||||||||||
| 84.7.1b | R | ||||||||||||||
| 84.7.1c | R | ||||||||||||||
| 84.7.1d | R | ||||||||||||||
| 84.7.1e1 | C | ||||||||||||||
| 84.7.1e2 | C | ||||||||||||||
| 84.7.1f1 | C | ||||||||||||||
| 84.7.1f2 | C | ||||||||||||||
| 84.7.1g1 | C | ||||||||||||||
| 84.7.1g2 | C | ||||||||||||||
| 84.7.1h1 | C | ||||||||||||||
| 84.7.1h2 | C | ||||||||||||||
| 84.7.6a | R | ||||||||||||||
| 84.7.6b | R |
Regular extensions
Data not computed