Group action invariants
| Degree $n$ : | $14$ | |
| Transitive number $t$ : | $14$ | |
| Group : | $C_7^2:C_6$ | |
| CHM label : | $[7^{2}:3]2$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (2,4,6,8,10,12,14), (1,9,11)(2,4,8)(3,13,5)(6,12,10), (1,8)(2,9)(3,10)(4,11)(5,12)(6,13)(7,14) | |
| $|\Aut(F/K)|$: | $1$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ 3: $C_3$ 6: $C_6$ 21: $C_7:C_3$ 42: $F_7$, $(C_7:C_3) \times C_2$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 7: None
Low degree siblings
14T14 x 2, 42T61 x 3Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 3, 3, 3, 3, 1, 1 $ | $49$ | $3$ | $( 3, 5, 9)( 4, 6,10)( 7,13,11)( 8,14,12)$ |
| $ 3, 3, 3, 3, 1, 1 $ | $49$ | $3$ | $( 3, 9, 5)( 4,10, 6)( 7,11,13)( 8,12,14)$ |
| $ 7, 1, 1, 1, 1, 1, 1, 1 $ | $6$ | $7$ | $( 2, 4, 6, 8,10,12,14)$ |
| $ 7, 1, 1, 1, 1, 1, 1, 1 $ | $6$ | $7$ | $( 2, 8,14, 6,12, 4,10)$ |
| $ 2, 2, 2, 2, 2, 2, 2 $ | $7$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)$ |
| $ 6, 6, 2 $ | $49$ | $6$ | $( 1, 2)( 3, 6, 9, 4, 5,10)( 7,14,11, 8,13,12)$ |
| $ 6, 6, 2 $ | $49$ | $6$ | $( 1, 2)( 3,10, 5, 4, 9, 6)( 7,12,13, 8,11,14)$ |
| $ 14 $ | $21$ | $14$ | $( 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13,14)$ |
| $ 14 $ | $21$ | $14$ | $( 1, 2, 7, 8,13,14, 5, 6,11,12, 3, 4, 9,10)$ |
| $ 7, 7 $ | $3$ | $7$ | $( 1, 3, 5, 7, 9,11,13)( 2, 4, 6, 8,10,12,14)$ |
| $ 7, 7 $ | $6$ | $7$ | $( 1, 3, 5, 7, 9,11,13)( 2, 6,10,14, 4, 8,12)$ |
| $ 7, 7 $ | $6$ | $7$ | $( 1, 3, 5, 7, 9,11,13)( 2, 8,14, 6,12, 4,10)$ |
| $ 7, 7 $ | $6$ | $7$ | $( 1, 3, 5, 7, 9,11,13)( 2,12, 8, 4,14,10, 6)$ |
| $ 7, 7 $ | $6$ | $7$ | $( 1, 3, 5, 7, 9,11,13)( 2,14,12,10, 8, 6, 4)$ |
| $ 7, 7 $ | $3$ | $7$ | $( 1, 7,13, 5,11, 3, 9)( 2, 8,14, 6,12, 4,10)$ |
| $ 7, 7 $ | $6$ | $7$ | $( 1, 7,13, 5,11, 3, 9)( 2,12, 8, 4,14,10, 6)$ |
Group invariants
| Order: | $294=2 \cdot 3 \cdot 7^{2}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [294, 12] |
| Character table: |
2 1 1 1 . . 1 1 1 1 1 1 . . . . 1 .
3 1 1 1 . . 1 1 1 . . . . . . . . .
7 2 . . 2 2 1 . . 1 1 2 2 2 2 2 2 2
1a 3a 3b 7a 7b 2a 6a 6b 14a 14b 7c 7d 7e 7f 7g 7h 7i
2P 1a 3b 3a 7a 7b 1a 3b 3a 7c 7h 7c 7d 7e 7f 7g 7h 7i
3P 1a 1a 1a 7b 7a 2a 2a 2a 14b 14a 7h 7i 7f 7e 7g 7c 7d
5P 1a 3b 3a 7b 7a 2a 6b 6a 14b 14a 7h 7i 7f 7e 7g 7c 7d
7P 1a 3a 3b 1a 1a 2a 6a 6b 2a 2a 1a 1a 1a 1a 1a 1a 1a
11P 1a 3b 3a 7a 7b 2a 6b 6a 14a 14b 7c 7d 7e 7f 7g 7h 7i
13P 1a 3a 3b 7b 7a 2a 6a 6b 14b 14a 7h 7i 7f 7e 7g 7c 7d
X.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 1 1 1 1 -1 -1 -1 -1 -1 1 1 1 1 1 1 1
X.3 1 A /A 1 1 -1 -A -/A -1 -1 1 1 1 1 1 1 1
X.4 1 /A A 1 1 -1 -/A -A -1 -1 1 1 1 1 1 1 1
X.5 1 A /A 1 1 1 A /A 1 1 1 1 1 1 1 1 1
X.6 1 /A A 1 1 1 /A A 1 1 1 1 1 1 1 1 1
X.7 3 . . B /B -3 . . -B -/B B /B B /B 3 /B B
X.8 3 . . /B B -3 . . -/B -B /B B /B B 3 B /B
X.9 3 . . B /B 3 . . B /B B /B B /B 3 /B B
X.10 3 . . /B B 3 . . /B B /B B /B B 3 B /B
X.11 6 . . -1 -1 . . . . . 6 -1 -1 -1 -1 6 -1
X.12 6 . . -1 -1 . . . . . /C /D C /C -1 C D
X.13 6 . . -1 -1 . . . . . C D /C C -1 /C /D
X.14 6 . . C /C . . . . . /C -1 D /D -1 C -1
X.15 6 . . /C C . . . . . C -1 /D D -1 /C -1
X.16 6 . . D /D . . . . . /C /C -1 -1 -1 C C
X.17 6 . . /D D . . . . . C C -1 -1 -1 /C /C
A = E(3)^2
= (-1-Sqrt(-3))/2 = -1-b3
B = E(7)^3+E(7)^5+E(7)^6
= (-1-Sqrt(-7))/2 = -1-b7
C = 2*E(7)+2*E(7)^2+2*E(7)^4
= -1+Sqrt(-7) = 2b7
D = -3*E(7)-3*E(7)^2-2*E(7)^3-3*E(7)^4-2*E(7)^5-2*E(7)^6
= (5-Sqrt(-7))/2 = 2-b7
|