Group action invariants
| Degree $n$ : | $14$ | |
| Transitive number $t$ : | $24$ | |
| CHM label : | $[7^{2}:6]2$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (2,4,6,8,10,12,14), (1,9,11)(2,4,8)(3,13,5)(6,12,10), (1,8)(2,9)(3,10)(4,11)(5,12)(6,13)(7,14), (1,13)(2,12)(3,11)(4,10)(5,9)(6,8) | |
| $|\Aut(F/K)|$: | $1$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 3 3: $C_3$ 4: $C_2^2$ 6: $C_6$ x 3 12: $C_6\times C_2$ 42: $F_7$ x 2 84: $F_7 \times C_2$ x 2 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 7: None
Low degree siblings
14T24 x 2, 28T77 x 3, 42T121 x 3Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 7, 1, 1, 1, 1, 1, 1, 1 $ | $12$ | $7$ | $( 2, 4, 6, 8,10,12,14)$ |
| $ 7, 7 $ | $6$ | $7$ | $( 1, 3, 5, 7, 9,11,13)( 2, 4, 6, 8,10,12,14)$ |
| $ 7, 7 $ | $12$ | $7$ | $( 1, 3, 5, 7, 9,11,13)( 2, 8,14, 6,12, 4,10)$ |
| $ 7, 7 $ | $12$ | $7$ | $( 1, 3, 5, 7, 9,11,13)( 2, 6,10,14, 4, 8,12)$ |
| $ 7, 7 $ | $6$ | $7$ | $( 1, 3, 5, 7, 9,11,13)( 2,14,12,10, 8, 6, 4)$ |
| $ 3, 3, 3, 3, 1, 1 $ | $49$ | $3$ | $( 3, 5, 9)( 4, 6,10)( 7,13,11)( 8,14,12)$ |
| $ 3, 3, 3, 3, 1, 1 $ | $49$ | $3$ | $( 3, 9, 5)( 4,10, 6)( 7,11,13)( 8,12,14)$ |
| $ 2, 2, 2, 2, 2, 2, 2 $ | $7$ | $2$ | $( 1, 8)( 2, 9)( 3,10)( 4,11)( 5,12)( 6,13)( 7,14)$ |
| $ 14 $ | $42$ | $14$ | $( 1,10, 3,12, 5,14, 7, 2, 9, 4,11, 6,13, 8)$ |
| $ 6, 6, 2 $ | $49$ | $6$ | $( 1,14,13,10, 5, 8)( 2, 3, 4, 7,12, 9)( 6,11)$ |
| $ 6, 6, 2 $ | $49$ | $6$ | $( 1,12, 3, 6, 7, 8)( 2, 5,14,11,10, 9)( 4,13)$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1 $ | $49$ | $2$ | $( 3,13)( 4,14)( 5,11)( 6,12)( 7, 9)( 8,10)$ |
| $ 6, 6, 1, 1 $ | $49$ | $6$ | $( 3,11, 9,13, 5, 7)( 4,12,10,14, 6, 8)$ |
| $ 6, 6, 1, 1 $ | $49$ | $6$ | $( 3, 7, 5,13, 9,11)( 4, 8, 6,14,10,12)$ |
| $ 14 $ | $42$ | $14$ | $( 1, 8, 3, 6, 5, 4, 7, 2, 9,14,11,12,13,10)$ |
| $ 2, 2, 2, 2, 2, 2, 2 $ | $7$ | $2$ | $( 1,10)( 2, 9)( 3, 8)( 4, 7)( 5, 6)(11,14)(12,13)$ |
| $ 6, 6, 2 $ | $49$ | $6$ | $( 1,14, 7, 2, 3,10)( 4,13)( 5, 6, 9,12,11, 8)$ |
| $ 6, 6, 2 $ | $49$ | $6$ | $( 1,12, 7, 2, 5,10)( 3, 4,11,14,13, 6)( 8, 9)$ |
Group invariants
| Order: | $588=2^{2} \cdot 3 \cdot 7^{2}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [588, 37] |
| Character table: |
2 2 . 1 . . 1 2 2 2 1 2 2 2 2 2 1 2 2 2
3 1 . . . . . 1 1 1 . 1 1 1 1 1 . 1 1 1
7 2 2 2 2 2 2 . . 1 1 . . . . . 1 1 . .
1a 7a 7b 7c 7d 7e 3a 3b 2a 14a 6a 6b 2b 6c 6d 14b 2c 6e 6f
2P 1a 7a 7b 7c 7d 7e 3b 3a 1a 7b 3b 3a 1a 3b 3a 7e 1a 3b 3a
3P 1a 7a 7b 7c 7d 7e 1a 1a 2a 14a 2a 2a 2b 2b 2b 14b 2c 2c 2c
5P 1a 7a 7b 7c 7d 7e 3b 3a 2a 14a 6b 6a 2b 6d 6c 14b 2c 6f 6e
7P 1a 1a 1a 1a 1a 1a 3a 3b 2a 2a 6a 6b 2b 6c 6d 2c 2c 6e 6f
11P 1a 7a 7b 7c 7d 7e 3b 3a 2a 14a 6b 6a 2b 6d 6c 14b 2c 6f 6e
13P 1a 7a 7b 7c 7d 7e 3a 3b 2a 14a 6a 6b 2b 6c 6d 14b 2c 6e 6f
X.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 1 1 1 1
X.3 1 1 1 1 1 1 1 1 -1 -1 -1 -1 1 1 1 -1 -1 -1 -1
X.4 1 1 1 1 1 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1
X.5 1 1 1 1 1 1 A /A -1 -1 -A -/A -1 -A -/A 1 1 A /A
X.6 1 1 1 1 1 1 /A A -1 -1 -/A -A -1 -/A -A 1 1 /A A
X.7 1 1 1 1 1 1 A /A -1 -1 -A -/A 1 A /A -1 -1 -A -/A
X.8 1 1 1 1 1 1 /A A -1 -1 -/A -A 1 /A A -1 -1 -/A -A
X.9 1 1 1 1 1 1 A /A 1 1 A /A -1 -A -/A -1 -1 -A -/A
X.10 1 1 1 1 1 1 /A A 1 1 /A A -1 -/A -A -1 -1 -/A -A
X.11 1 1 1 1 1 1 A /A 1 1 A /A 1 A /A 1 1 A /A
X.12 1 1 1 1 1 1 /A A 1 1 /A A 1 /A A 1 1 /A A
X.13 6 -1 6 -1 -1 -1 . . . . . . . . . -1 6 . .
X.14 6 -1 6 -1 -1 -1 . . . . . . . . . 1 -6 . .
X.15 6 -1 -1 -1 -1 6 . . -6 1 . . . . . . . . .
X.16 6 -1 -1 -1 -1 6 . . 6 -1 . . . . . . . . .
X.17 12 5 -2 -2 -2 -2 . . . . . . . . . . . . .
X.18 12 -2 -2 -2 5 -2 . . . . . . . . . . . . .
X.19 12 -2 -2 5 -2 -2 . . . . . . . . . . . . .
A = E(3)^2
= (-1-Sqrt(-3))/2 = -1-b3
|