Show commands: Magma
Group invariants
Abstract group: | $D_7:F_7$ |
| |
Order: | $588=2^{2} \cdot 3 \cdot 7^{2}$ |
| |
Cyclic: | no |
| |
Abelian: | no |
| |
Solvable: | yes |
| |
Nilpotency class: | not nilpotent |
|
Group action invariants
Degree $n$: | $14$ |
| |
Transitive number $t$: | $24$ |
| |
CHM label: | $[7^{2}:6]2$ | ||
Parity: | $-1$ |
| |
Primitive: | no |
| |
$\card{\Aut(F/K)}$: | $1$ |
| |
Generators: | $(2,4,6,8,10,12,14)$, $(1,9,11)(2,4,8)(3,13,5)(6,12,10)$, $(1,8)(2,9)(3,10)(4,11)(5,12)(6,13)(7,14)$, $(1,13)(2,12)(3,11)(4,10)(5,9)(6,8)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 3 $3$: $C_3$ $4$: $C_2^2$ $6$: $C_6$ x 3 $12$: $C_6\times C_2$ $42$: $F_7$ x 2 $84$: $F_7 \times C_2$ x 2 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 7: None
Low degree siblings
14T24 x 2, 28T77 x 3, 42T121 x 3Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{14}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{7}$ | $7$ | $2$ | $7$ | $( 1, 6)( 2,11)( 3, 8)( 4,13)( 5,10)( 7,12)( 9,14)$ |
2B | $2^{7}$ | $7$ | $2$ | $7$ | $( 1,14)( 2,13)( 3,12)( 4,11)( 5,10)( 6, 9)( 7, 8)$ |
2C | $2^{6},1^{2}$ | $49$ | $2$ | $6$ | $( 1, 7)( 2,14)( 3, 5)( 4,12)( 6,10)( 9,13)$ |
3A1 | $3^{4},1^{2}$ | $49$ | $3$ | $8$ | $( 1, 5,13)( 3, 9, 7)( 4, 6,10)( 8,14,12)$ |
3A-1 | $3^{4},1^{2}$ | $49$ | $3$ | $8$ | $( 1,13, 5)( 3, 7, 9)( 4,10, 6)( 8,12,14)$ |
6A1 | $6^{2},2$ | $49$ | $6$ | $11$ | $( 1, 4, 5, 6,13,10)( 2,11)( 3,12, 9, 8, 7,14)$ |
6A-1 | $6^{2},2$ | $49$ | $6$ | $11$ | $( 1,10,13, 6, 5, 4)( 2,11)( 3,14, 7, 8, 9,12)$ |
6B1 | $6^{2},2$ | $49$ | $6$ | $11$ | $( 1,12, 7,14, 3, 8)( 2,13)( 4, 9,10,11, 6, 5)$ |
6B-1 | $6^{2},2$ | $49$ | $6$ | $11$ | $( 1, 8, 3,14, 7,12)( 2,13)( 4, 5, 6,11,10, 9)$ |
6C1 | $6^{2},1^{2}$ | $49$ | $6$ | $10$ | $( 1, 9, 5, 7,13, 3)( 2, 4,10,14,12, 6)$ |
6C-1 | $6^{2},1^{2}$ | $49$ | $6$ | $10$ | $( 1, 3,13, 7, 5, 9)( 2, 6,12,14,10, 4)$ |
7A | $7^{2}$ | $6$ | $7$ | $12$ | $( 1,11, 7, 3,13, 9, 5)( 2, 6,10,14, 4, 8,12)$ |
7B | $7^{2}$ | $6$ | $7$ | $12$ | $( 1, 7,13, 5,11, 3, 9)( 2, 8,14, 6,12, 4,10)$ |
7C | $7,1^{7}$ | $12$ | $7$ | $6$ | $( 2,10, 4,12, 6,14, 8)$ |
7D | $7^{2}$ | $12$ | $7$ | $12$ | $( 1,11, 7, 3,13, 9, 5)( 2,14,12,10, 8, 6, 4)$ |
7E | $7^{2}$ | $12$ | $7$ | $12$ | $( 1, 5, 9,13, 3, 7,11)( 2,14,12,10, 8, 6, 4)$ |
14A | $14$ | $42$ | $14$ | $13$ | $( 1, 6,11,10, 7,14, 3, 4,13, 8, 9,12, 5, 2)$ |
14B | $14$ | $42$ | $14$ | $13$ | $( 1, 4, 7,10,13, 2, 5, 8,11,14, 3, 6, 9,12)$ |
Malle's constant $a(G)$: $1/6$
Character table
1A | 2A | 2B | 2C | 3A1 | 3A-1 | 6A1 | 6A-1 | 6B1 | 6B-1 | 6C1 | 6C-1 | 7A | 7B | 7C | 7D | 7E | 14A | 14B | ||
Size | 1 | 7 | 7 | 49 | 49 | 49 | 49 | 49 | 49 | 49 | 49 | 49 | 6 | 6 | 12 | 12 | 12 | 42 | 42 | |
2 P | 1A | 1A | 1A | 1A | 3A-1 | 3A1 | 3A1 | 3A-1 | 3A-1 | 3A1 | 3A1 | 3A-1 | 7A | 7B | 7C | 7D | 7E | 7A | 7B | |
3 P | 1A | 2A | 2B | 2C | 1A | 1A | 2A | 2A | 2B | 2B | 2C | 2C | 7A | 7B | 7C | 7D | 7E | 14A | 14B | |
7 P | 1A | 2A | 2B | 2C | 3A1 | 3A-1 | 6A1 | 6A-1 | 6B1 | 6B-1 | 6C1 | 6C-1 | 1A | 1A | 1A | 1A | 1A | 2B | 2A | |
Type | ||||||||||||||||||||
588.37.1a | R | |||||||||||||||||||
588.37.1b | R | |||||||||||||||||||
588.37.1c | R | |||||||||||||||||||
588.37.1d | R | |||||||||||||||||||
588.37.1e1 | C | |||||||||||||||||||
588.37.1e2 | C | |||||||||||||||||||
588.37.1f1 | C | |||||||||||||||||||
588.37.1f2 | C | |||||||||||||||||||
588.37.1g1 | C | |||||||||||||||||||
588.37.1g2 | C | |||||||||||||||||||
588.37.1h1 | C | |||||||||||||||||||
588.37.1h2 | C | |||||||||||||||||||
588.37.6a | R | |||||||||||||||||||
588.37.6b | R | |||||||||||||||||||
588.37.6c | R | |||||||||||||||||||
588.37.6d | R | |||||||||||||||||||
588.37.12a | R | |||||||||||||||||||
588.37.12b | R | |||||||||||||||||||
588.37.12c | R |
Regular extensions
Data not computed