Group action invariants
| Degree $n$ : | $14$ | |
| Transitive number $t$ : | $44$ | |
| CHM label : | $[2^{7}]F_{21}(7)=2wrF_{21}(7)$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,9,11)(2,4,8)(3,13,5)(6,12,10), (7,14), (1,3,5,7,9,11,13)(2,4,6,8,10,12,14) | |
| $|\Aut(F/K)|$: | $2$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ 3: $C_3$ 6: $C_6$ 21: $C_7:C_3$ 42: $(C_7:C_3) \times C_2$ 168: $C_2^3:(C_7: C_3)$ x 2 336: 14T18 x 2 1344: 14T35 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 7: $C_7:C_3$
Low degree siblings
28T226, 28T235 x 2, 28T236, 42T309, 42T310, 42T311Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $21$ | $2$ | $( 3,10)( 7,14)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1 $ | $7$ | $2$ | $( 3,10)( 5,12)( 6,13)( 7,14)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1 $ | $21$ | $2$ | $( 2, 9)( 3,10)( 6,13)( 7,14)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1 $ | $7$ | $2$ | $( 2, 9)( 5,12)( 6,13)( 7,14)$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1 $ | $7$ | $2$ | $( 2, 9)( 3,10)( 4,11)( 5,12)( 6,13)( 7,14)$ |
| $ 7, 7 $ | $192$ | $7$ | $( 1,13,11, 9, 7, 5, 3)( 2,14,12,10, 8, 6, 4)$ |
| $ 7, 7 $ | $192$ | $7$ | $( 1, 9, 3,11, 5,13, 7)( 2,10, 4,12, 6,14, 8)$ |
| $ 3, 3, 3, 3, 1, 1 $ | $112$ | $3$ | $( 1,13, 9)( 2, 8, 6)( 4,12,14)( 5, 7,11)$ |
| $ 6, 3, 3, 2 $ | $112$ | $6$ | $( 1,13, 9)( 2, 8, 6)( 3,10)( 4,12, 7,11, 5,14)$ |
| $ 6, 6, 1, 1 $ | $112$ | $6$ | $( 1, 6, 2, 8,13, 9)( 4,12, 7,11, 5,14)$ |
| $ 6, 3, 3, 2 $ | $112$ | $6$ | $( 1, 6, 2, 8,13, 9)( 3,10)( 4,12,14)( 5, 7,11)$ |
| $ 3, 3, 3, 3, 1, 1 $ | $112$ | $3$ | $( 1, 9,13)( 2, 6, 8)( 4,14,12)( 5,11, 7)$ |
| $ 6, 3, 3, 2 $ | $112$ | $6$ | $( 1, 9,13)( 2, 6, 8)( 3,10)( 4, 7, 5,11,14,12)$ |
| $ 6, 6, 1, 1 $ | $112$ | $6$ | $( 1, 9, 6, 8, 2,13)( 4, 7, 5,11,14,12)$ |
| $ 6, 3, 3, 2 $ | $112$ | $6$ | $( 1, 9, 6, 8, 2,13)( 3,10)( 4,14,12)( 5,11, 7)$ |
| $ 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $7$ | $2$ | $( 7,14)$ |
| $ 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $21$ | $2$ | $( 3,10)( 6,13)( 7,14)$ |
| $ 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $7$ | $2$ | $( 3,10)( 5,12)( 6,13)$ |
| $ 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $7$ | $2$ | $( 2, 9)( 6,13)( 7,14)$ |
| $ 2, 2, 2, 2, 2, 1, 1, 1, 1 $ | $21$ | $2$ | $( 2, 9)( 3,10)( 5,12)( 6,13)( 7,14)$ |
| $ 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 8)( 2, 9)( 3,10)( 4,11)( 5,12)( 6,13)( 7,14)$ |
| $ 14 $ | $192$ | $14$ | $( 1,13,11, 9, 7,12,10, 8, 6, 4, 2,14, 5, 3)$ |
| $ 14 $ | $192$ | $14$ | $( 1, 9, 3,11, 5,13, 7, 8, 2,10, 4,12, 6,14)$ |
| $ 6, 3, 3, 1, 1 $ | $112$ | $6$ | $( 1,13, 9)( 2, 8, 6)( 4,12,14,11, 5, 7)$ |
| $ 3, 3, 3, 3, 2 $ | $112$ | $6$ | $( 1,13, 9)( 2, 8, 6)( 3,10)( 4,12, 7)( 5,14,11)$ |
| $ 6, 3, 3, 1, 1 $ | $112$ | $6$ | $( 1, 6, 2, 8,13, 9)( 4,12, 7)( 5,14,11)$ |
| $ 6, 6, 2 $ | $112$ | $6$ | $( 1, 6, 2, 8,13, 9)( 3,10)( 4,12,14,11, 5, 7)$ |
| $ 6, 3, 3, 1, 1 $ | $112$ | $6$ | $( 1, 9,13)( 2, 6, 8)( 4,14, 5,11, 7,12)$ |
| $ 3, 3, 3, 3, 2 $ | $112$ | $6$ | $( 1, 9,13)( 2, 6, 8)( 3,10)( 4, 7,12)( 5,11,14)$ |
| $ 6, 3, 3, 1, 1 $ | $112$ | $6$ | $( 1, 9, 6, 8, 2,13)( 4, 7,12)( 5,11,14)$ |
| $ 6, 6, 2 $ | $112$ | $6$ | $( 1, 9, 6, 8, 2,13)( 3,10)( 4,14, 5,11, 7,12)$ |
Group invariants
| Order: | $2688=2^{7} \cdot 3 \cdot 7$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | Data not available |
| Character table: Data not available. |