Group action invariants
| Degree $n$ : | $14$ | |
| Transitive number $t$ : | $29$ | |
| Group : | $C_2 \wr C_7$ | |
| CHM label : | $[2^{7}]7=2wr7$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (7,14), (1,3,5,7,9,11,13)(2,4,6,8,10,12,14) | |
| $|\Aut(F/K)|$: | $2$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ 7: $C_7$ 14: $C_{14}$ 56: $C_2^3:C_7$ x 2 112: 14T9 x 2 448: 14T21 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 7: $C_7$
Low degree siblings
14T29 x 6, 28T104 x 7, 28T110 x 21, 28T111 x 42, 28T112 x 42, 28T113 x 21, 28T114 x 42, 28T115 x 42, 28T116 x 14, 28T117 x 42, 28T118 x 7Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $7$ | $2$ | $( 7,14)$ |
| $ 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $7$ | $2$ | $( 2, 9)( 7,14)$ |
| $ 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $7$ | $2$ | $( 4,11)( 7,14)$ |
| $ 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $7$ | $2$ | $( 2, 9)( 4,11)( 7,14)$ |
| $ 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $7$ | $2$ | $( 6,13)( 7,14)$ |
| $ 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $7$ | $2$ | $( 2, 9)( 6,13)( 7,14)$ |
| $ 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $7$ | $2$ | $( 4,11)( 6,13)( 7,14)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1 $ | $7$ | $2$ | $( 2, 9)( 4,11)( 6,13)( 7,14)$ |
| $ 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $7$ | $2$ | $( 1, 8)( 2, 9)( 7,14)$ |
| $ 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $7$ | $2$ | $( 1, 8)( 4,11)( 7,14)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1 $ | $7$ | $2$ | $( 1, 8)( 2, 9)( 4,11)( 7,14)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1 $ | $7$ | $2$ | $( 1, 8)( 2, 9)( 6,13)( 7,14)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1 $ | $7$ | $2$ | $( 1, 8)( 4,11)( 6,13)( 7,14)$ |
| $ 2, 2, 2, 2, 2, 1, 1, 1, 1 $ | $7$ | $2$ | $( 1, 8)( 2, 9)( 4,11)( 6,13)( 7,14)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1 $ | $7$ | $2$ | $( 2, 9)( 3,10)( 6,13)( 7,14)$ |
| $ 2, 2, 2, 2, 2, 1, 1, 1, 1 $ | $7$ | $2$ | $( 2, 9)( 3,10)( 4,11)( 6,13)( 7,14)$ |
| $ 2, 2, 2, 2, 2, 1, 1, 1, 1 $ | $7$ | $2$ | $( 1, 8)( 2, 9)( 3,10)( 4,11)( 7,14)$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1 $ | $7$ | $2$ | $( 1, 8)( 2, 9)( 3,10)( 4,11)( 6,13)( 7,14)$ |
| $ 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 8)( 2, 9)( 3,10)( 4,11)( 5,12)( 6,13)( 7,14)$ |
| $ 7, 7 $ | $64$ | $7$ | $( 1, 3, 5, 7, 9,11,13)( 2, 4, 6, 8,10,12,14)$ |
| $ 14 $ | $64$ | $14$ | $( 1, 3, 5,14, 2, 4, 6, 8,10,12, 7, 9,11,13)$ |
| $ 7, 7 $ | $64$ | $7$ | $( 1, 7,13, 5,11, 3, 9)( 2, 8,14, 6,12, 4,10)$ |
| $ 14 $ | $64$ | $14$ | $( 1,14, 6,12, 4,10, 2, 8, 7,13, 5,11, 3, 9)$ |
| $ 7, 7 $ | $64$ | $7$ | $( 1, 5, 9,13, 3, 7,11)( 2, 6,10,14, 4, 8,12)$ |
| $ 14 $ | $64$ | $14$ | $( 1, 5, 9,13, 3,14, 4, 8,12, 2, 6,10, 7,11)$ |
| $ 7, 7 $ | $64$ | $7$ | $( 1,13,11, 9, 7, 5, 3)( 2,14,12,10, 8, 6, 4)$ |
| $ 14 $ | $64$ | $14$ | $( 1,13,11, 9,14,12,10, 8, 6, 4, 2, 7, 5, 3)$ |
| $ 7, 7 $ | $64$ | $7$ | $( 1, 9, 3,11, 5,13, 7)( 2,10, 4,12, 6,14, 8)$ |
| $ 14 $ | $64$ | $14$ | $( 1, 9, 3,11, 5,13,14, 8, 2,10, 4,12, 6, 7)$ |
| $ 7, 7 $ | $64$ | $7$ | $( 1,11, 7, 3,13, 9, 5)( 2,12, 8, 4,14,10, 6)$ |
| $ 14 $ | $64$ | $14$ | $( 1,11,14,10, 6, 2,12, 8, 4, 7, 3,13, 9, 5)$ |
Group invariants
| Order: | $896=2^{7} \cdot 7$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [896, 19347] |
| Character table: Data not available. |