Group action invariants
| Degree $n$ : | $14$ | |
| Transitive number $t$ : | $46$ | |
| CHM label : | $2[1/2]S(7)$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,8)(2,7)(3,10)(4,11)(5,12)(6,13)(9,14), (3,13,5)(6,12,10), (1,3,5,7,9,11,13)(2,4,6,8,10,12,14) | |
| $|\Aut(F/K)|$: | $2$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 7: $S_7$
Low degree siblings
7T7, 21T38, 30T565, 35T31, 42T411, 42T412, 42T413, 42T418Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 2, 2, 2 $ | $105$ | $2$ | $( 1,12)( 2, 9)( 3, 4)( 5, 8)( 6, 7)(10,11)(13,14)$ |
| $ 3, 3, 3, 3, 1, 1 $ | $280$ | $3$ | $( 1,13,11)( 3, 5, 7)( 4, 8, 6)(10,12,14)$ |
| $ 6, 6, 2 $ | $840$ | $6$ | $( 1,10,13,12,11,14)( 2, 9)( 3, 6, 5, 4, 7, 8)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1 $ | $105$ | $2$ | $( 3, 5)( 4, 6)(10,12)(11,13)$ |
| $ 3, 3, 1, 1, 1, 1, 1, 1, 1, 1 $ | $70$ | $3$ | $( 1, 9, 7)( 2,14, 8)$ |
| $ 3, 3, 2, 2, 2, 2 $ | $210$ | $6$ | $( 1, 7, 9)( 2, 8,14)( 3, 5)( 4, 6)(10,12)(11,13)$ |
| $ 4, 4, 2, 2, 2 $ | $210$ | $4$ | $( 1, 8)( 2, 9)( 3, 6, 5, 4)( 7,14)(10,13,12,11)$ |
| $ 2, 2, 2, 2, 2, 2, 2 $ | $21$ | $2$ | $( 1, 8)( 2, 7)( 3,10)( 4,11)( 5,12)( 6,13)( 9,14)$ |
| $ 5, 5, 1, 1, 1, 1 $ | $504$ | $5$ | $( 1,11, 5, 3,13)( 4,12,10, 6, 8)$ |
| $ 10, 2, 2 $ | $504$ | $10$ | $( 1, 4, 5,10,13, 8,11,12, 3, 6)( 2, 7)( 9,14)$ |
| $ 7, 7 $ | $720$ | $7$ | $( 1,11, 9, 5,13, 7, 3)( 2,12, 6,14,10, 8, 4)$ |
| $ 6, 4, 4 $ | $420$ | $12$ | $( 1,14, 9, 8, 7, 2)( 3, 6, 5, 4)(10,13,12,11)$ |
| $ 6, 2, 2, 2, 2 $ | $420$ | $6$ | $( 1, 2, 7, 8, 9,14)( 3,10)( 4,13)( 5,12)( 6,11)$ |
| $ 4, 4, 2, 2, 1, 1 $ | $630$ | $4$ | $( 1,13, 5,11)( 2,10)( 3, 9)( 4, 8, 6,12)$ |
Group invariants
| Order: | $5040=2^{4} \cdot 3^{2} \cdot 5 \cdot 7$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | No | |
| GAP id: | Data not available |
| Character table: |
2 4 4 3 3 3 2 . 4 4 2 1 1 3 1 1
3 2 1 2 1 1 1 . 1 1 1 2 1 . . .
5 1 . . . . . . . 1 . . . . 1 1
7 1 . . . . . 1 . . . . . . . .
1a 2a 3a 4a 6a 12a 7a 2b 2c 6b 3b 6c 4b 5a 10a
2P 1a 1a 3a 2a 3a 6a 7a 1a 1a 3a 3b 3b 2a 5a 5a
3P 1a 2a 1a 4a 2a 4a 7a 2b 2c 2c 1a 2b 4b 5a 10a
5P 1a 2a 3a 4a 6a 12a 7a 2b 2c 6b 3b 6c 4b 1a 2c
7P 1a 2a 3a 4a 6a 12a 1a 2b 2c 6b 3b 6c 4b 5a 10a
11P 1a 2a 3a 4a 6a 12a 7a 2b 2c 6b 3b 6c 4b 5a 10a
X.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 1 1 -1 1 -1 1 -1 -1 -1 1 -1 1 1 -1
X.3 6 2 3 2 -1 -1 -1 . 4 1 . . . 1 -1
X.4 6 2 3 -2 -1 1 -1 . -4 -1 . . . 1 1
X.5 14 2 -1 -2 -1 1 . . 4 1 2 . . -1 -1
X.6 14 2 2 . 2 . . -2 -6 . -1 1 . -1 -1
X.7 14 2 -1 2 -1 -1 . . -4 -1 2 . . -1 1
X.8 14 2 2 . 2 . . 2 6 . -1 -1 . -1 1
X.9 15 -1 3 -1 -1 -1 1 3 -5 1 . . -1 . .
X.10 15 -1 3 1 -1 1 1 -3 5 -1 . . -1 . .
X.11 20 -4 2 . 2 . -1 . . . 2 . . . .
X.12 21 1 -3 -1 1 -1 . -3 1 1 . . -1 1 1
X.13 21 1 -3 1 1 1 . 3 -1 -1 . . -1 1 -1
X.14 35 -1 -1 1 -1 1 . -1 -5 1 -1 -1 1 . .
X.15 35 -1 -1 -1 -1 -1 . 1 5 -1 -1 1 1 . .
|