Group action invariants
| Degree $n$ : | $14$ | |
| Transitive number $t$ : | $45$ | |
| CHM label : | $[F_{42}(7)^{2}]2=F_{42}(7)wr2$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (2,4,6,8,10,12,14), (2,12)(4,10)(6,8), (1,8)(2,9)(3,10)(4,11)(5,12)(6,13)(7,14), (2,4,8)(6,12,10) | |
| $|\Aut(F/K)|$: | $1$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 3 3: $C_3$ 4: $C_2^2$ 6: $S_3$, $C_6$ x 3 8: $D_{4}$ 12: $D_{6}$, $C_6\times C_2$ 18: $S_3\times C_3$ 24: $(C_6\times C_2):C_2$, $D_4 \times C_3$ 36: $C_6\times S_3$ 72: 12T42 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 7: None
Low degree siblings
28T251, 28T252, 28T253, 42T368, 42T369, 42T370, 42T371, 42T372Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 7, 1, 1, 1, 1, 1, 1, 1 $ | $12$ | $7$ | $( 2, 4, 6, 8,10,12,14)$ |
| $ 7, 7 $ | $36$ | $7$ | $( 1, 3, 5, 7, 9,11,13)( 2, 4, 6, 8,10,12,14)$ |
| $ 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $14$ | $2$ | $( 4,14)( 6,12)( 8,10)$ |
| $ 7, 2, 2, 2, 1 $ | $84$ | $14$ | $( 1, 3, 5, 7, 9,11,13)( 4,14)( 6,12)( 8,10)$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1 $ | $49$ | $2$ | $( 3,13)( 4,14)( 5,11)( 6,12)( 7, 9)( 8,10)$ |
| $ 3, 3, 3, 3, 1, 1 $ | $98$ | $3$ | $( 3, 9, 5)( 4, 6,10)( 7,11,13)( 8,14,12)$ |
| $ 6, 3, 3, 1, 1 $ | $98$ | $6$ | $( 3, 9, 5)( 4,12,10,14, 6, 8)( 7,11,13)$ |
| $ 6, 3, 3, 1, 1 $ | $98$ | $6$ | $( 3, 7, 5,13, 9,11)( 4, 6,10)( 8,14,12)$ |
| $ 6, 6, 1, 1 $ | $98$ | $6$ | $( 3, 7, 5,13, 9,11)( 4,12,10,14, 6, 8)$ |
| $ 2, 2, 2, 2, 2, 2, 2 $ | $42$ | $2$ | $( 1, 8)( 2, 9)( 3,10)( 4,11)( 5,12)( 6,13)( 7,14)$ |
| $ 14 $ | $252$ | $14$ | $( 1,10, 3,12, 5,14, 7, 2, 9, 4,11, 6,13, 8)$ |
| $ 4, 4, 4, 2 $ | $294$ | $4$ | $( 1,10, 3, 8)( 2, 9)( 4,11,14, 7)( 5, 6,13,12)$ |
| $ 3, 3, 1, 1, 1, 1, 1, 1, 1, 1 $ | $14$ | $3$ | $( 3, 5, 9)( 7,13,11)$ |
| $ 7, 3, 3, 1 $ | $84$ | $21$ | $( 2, 4, 6, 8,10,12,14)( 3, 5, 9)( 7,13,11)$ |
| $ 3, 3, 2, 2, 2, 1, 1 $ | $98$ | $6$ | $( 3, 5, 9)( 4,14)( 6,12)( 7,13,11)( 8,10)$ |
| $ 6, 1, 1, 1, 1, 1, 1, 1, 1 $ | $14$ | $6$ | $( 3,11, 9,13, 5, 7)$ |
| $ 7, 6, 1 $ | $84$ | $42$ | $( 2, 4, 6, 8,10,12,14)( 3,11, 9,13, 5, 7)$ |
| $ 6, 2, 2, 2, 1, 1 $ | $98$ | $6$ | $( 3,11, 9,13, 5, 7)( 4,14)( 6,12)( 8,10)$ |
| $ 3, 3, 3, 3, 1, 1 $ | $49$ | $3$ | $( 3, 9, 5)( 4,10, 6)( 7,11,13)( 8,12,14)$ |
| $ 6, 3, 3, 1, 1 $ | $98$ | $6$ | $( 3, 9, 5)( 4, 8, 6,14,10,12)( 7,11,13)$ |
| $ 6, 6, 1, 1 $ | $49$ | $6$ | $( 3, 7, 5,13, 9,11)( 4, 8, 6,14,10,12)$ |
| $ 6, 6, 2 $ | $294$ | $6$ | $( 1, 8)( 2, 9,10, 3,12, 5)( 4,11,14, 7, 6,13)$ |
| $ 12, 2 $ | $294$ | $12$ | $( 1,10, 3, 6,13,14, 7,12, 5, 2, 9, 8)( 4,11)$ |
| $ 3, 3, 1, 1, 1, 1, 1, 1, 1, 1 $ | $14$ | $3$ | $( 3, 9, 5)( 7,11,13)$ |
| $ 7, 3, 3, 1 $ | $84$ | $21$ | $( 2, 4, 6, 8,10,12,14)( 3, 9, 5)( 7,11,13)$ |
| $ 3, 3, 2, 2, 2, 1, 1 $ | $98$ | $6$ | $( 3, 9, 5)( 4,14)( 6,12)( 7,11,13)( 8,10)$ |
| $ 6, 1, 1, 1, 1, 1, 1, 1, 1 $ | $14$ | $6$ | $( 3, 7, 5,13, 9,11)$ |
| $ 7, 6, 1 $ | $84$ | $42$ | $( 2, 4, 6, 8,10,12,14)( 3, 7, 5,13, 9,11)$ |
| $ 6, 2, 2, 2, 1, 1 $ | $98$ | $6$ | $( 3, 7, 5,13, 9,11)( 4,14)( 6,12)( 8,10)$ |
| $ 3, 3, 3, 3, 1, 1 $ | $49$ | $3$ | $( 3, 5, 9)( 4, 6,10)( 7,13,11)( 8,14,12)$ |
| $ 6, 3, 3, 1, 1 $ | $98$ | $6$ | $( 3, 5, 9)( 4,12,10,14, 6, 8)( 7,13,11)$ |
| $ 6, 6, 1, 1 $ | $49$ | $6$ | $( 3,11, 9,13, 5, 7)( 4,12,10,14, 6, 8)$ |
| $ 6, 6, 2 $ | $294$ | $6$ | $( 1, 8)( 2, 9,12, 5,10, 3)( 4,11, 6,13,14, 7)$ |
| $ 12, 2 $ | $294$ | $12$ | $( 1,10, 3, 2, 9, 6,13, 4,11,12, 5, 8)( 7,14)$ |
Group invariants
| Order: | $3528=2^{3} \cdot 3^{2} \cdot 7^{2}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | Data not available |
| Character table: Data not available. |