Group action invariants
| Degree $n$ : | $14$ | |
| Transitive number $t$ : | $40$ | |
| CHM label : | $1/2[2^{7}]F_{42}(7)$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,9,11)(2,4,8)(3,13,5)(6,12,10), (1,13)(2,12)(3,11)(4,10)(5,9)(6,8)(7,14), (2,9)(7,14), (1,3,5,7,9,11,13)(2,4,6,8,10,12,14) | |
| $|\Aut(F/K)|$: | $2$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ 3: $C_3$ 6: $C_6$ 42: $F_7$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 7: $F_7$
Low degree siblings
14T41, 16T1502, 28T215, 28T227, 28T228, 28T237, 42T314, 42T315, 42T316, 42T317, 42T318, 42T319Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $21$ | $2$ | $( 1, 8)( 2, 9)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1 $ | $21$ | $2$ | $( 1, 8)( 2, 9)( 5,12)( 6,13)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1 $ | $14$ | $2$ | $( 1, 8)( 2, 9)( 3,10)( 6,13)$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1 $ | $7$ | $2$ | $( 1, 8)( 2, 9)( 3,10)( 5,12)( 6,13)( 7,14)$ |
| $ 7, 7 $ | $384$ | $7$ | $( 1,13, 4, 9, 7,12,10)( 2,14, 5, 3, 8, 6,11)$ |
| $ 3, 3, 3, 3, 1, 1 $ | $112$ | $3$ | $( 2,10, 5)( 3,12, 9)( 4,14, 6)( 7,13,11)$ |
| $ 6, 3, 3, 2 $ | $224$ | $6$ | $( 1, 8)( 2,10, 5, 9, 3,12)( 4,14, 6)( 7,13,11)$ |
| $ 6, 6, 1, 1 $ | $112$ | $6$ | $( 2,10,12, 9, 3, 5)( 4,14,13,11, 7, 6)$ |
| $ 3, 3, 3, 3, 1, 1 $ | $112$ | $3$ | $( 2, 5,10)( 3, 9,12)( 4, 6,14)( 7,11,13)$ |
| $ 6, 3, 3, 2 $ | $224$ | $6$ | $( 1, 8)( 2, 5,10, 9,12, 3)( 4, 6,14)( 7,11,13)$ |
| $ 6, 6, 1, 1 $ | $112$ | $6$ | $( 2,12, 3, 9, 5,10)( 4,13, 7,11, 6,14)$ |
| $ 4, 2, 2, 2, 2, 1, 1 $ | $168$ | $4$ | $( 2, 7)( 3, 6)( 4,12,11, 5)( 9,14)(10,13)$ |
| $ 4, 4, 2, 2, 2 $ | $168$ | $4$ | $( 1, 8)( 2, 7, 9,14)( 3, 6)( 4,12,11, 5)(10,13)$ |
| $ 4, 4, 4, 1, 1 $ | $56$ | $4$ | $( 2,14, 9, 7)( 3,13,10, 6)( 4,12,11, 5)$ |
| $ 2, 2, 2, 2, 2, 2, 2 $ | $56$ | $2$ | $( 1, 8)( 2,14)( 3, 6)( 4, 5)( 7, 9)(10,13)(11,12)$ |
| $ 12, 1, 1 $ | $224$ | $12$ | $( 2,13, 5,14, 3, 4, 9, 6,12, 7,10,11)$ |
| $ 6, 6, 2 $ | $224$ | $6$ | $( 1, 8)( 2,13, 5,14, 3, 4)( 6,12, 7,10,11, 9)$ |
| $ 12, 1, 1 $ | $224$ | $12$ | $( 2,11,10, 7, 5, 6, 9, 4, 3,14,12,13)$ |
| $ 6, 6, 2 $ | $224$ | $6$ | $( 1, 8)( 2,11,10, 7, 5, 6)( 3,14,12,13, 9, 4)$ |
Group invariants
| Order: | $2688=2^{7} \cdot 3 \cdot 7$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | Data not available |
| Character table: |
2 7 7 7 6 7 . 3 2 3 3 2 3 4 4 4 4 2 2 2 2
3 1 . . 1 1 . 1 1 1 1 1 1 . . 1 1 1 1 1 1
7 1 . . . . 1 . . . . . . . . . . . . . .
1a 2a 2b 2c 2d 7a 3a 6a 6b 3b 6c 6d 4a 4b 4c 2e 12a 6e 12b 6f
2P 1a 1a 1a 1a 1a 7a 3b 3b 3b 3a 3a 3a 2a 2b 2d 1a 6d 3b 6b 3a
3P 1a 2a 2b 2c 2d 7a 1a 2c 2d 1a 2c 2d 4a 4b 4c 2e 4c 2e 4c 2e
5P 1a 2a 2b 2c 2d 7a 3b 6c 6d 3a 6a 6b 4a 4b 4c 2e 12b 6f 12a 6e
7P 1a 2a 2b 2c 2d 1a 3a 6a 6b 3b 6c 6d 4a 4b 4c 2e 12a 6e 12b 6f
11P 1a 2a 2b 2c 2d 7a 3b 6c 6d 3a 6a 6b 4a 4b 4c 2e 12b 6f 12a 6e
X.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 1 1 1 1 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1
X.3 1 1 1 1 1 1 A A A /A /A /A -1 -1 -1 -1 -A -A -/A -/A
X.4 1 1 1 1 1 1 /A /A /A A A A -1 -1 -1 -1 -/A -/A -A -A
X.5 1 1 1 1 1 1 A A A /A /A /A 1 1 1 1 A A /A /A
X.6 1 1 1 1 1 1 /A /A /A A A A 1 1 1 1 /A /A A A
X.7 6 6 6 6 6 -1 . . . . . . . . . . . . . .
X.8 7 3 -1 -1 -5 . 1 -1 1 1 -1 1 1 -1 1 -1 1 -1 1 -1
X.9 7 3 -1 -1 -5 . 1 -1 1 1 -1 1 -1 1 -1 1 -1 1 -1 1
X.10 7 3 -1 -1 -5 . /A -/A /A A -A A 1 -1 1 -1 /A -/A A -A
X.11 7 3 -1 -1 -5 . A -A A /A -/A /A 1 -1 1 -1 A -A /A -/A
X.12 7 3 -1 -1 -5 . /A -/A /A A -A A -1 1 -1 1 -/A /A -A A
X.13 7 3 -1 -1 -5 . A -A A /A -/A /A -1 1 -1 1 -A A -/A /A
X.14 14 -2 -2 6 -2 . 2 . -2 2 . -2 . . . . . . . .
X.15 14 -2 -2 6 -2 . B . -B /B . -/B . . . . . . . .
X.16 14 -2 -2 6 -2 . /B . -/B B . -B . . . . . . . .
X.17 21 1 -3 -3 9 . . . . . . . -1 1 3 -3 . . . .
X.18 21 1 -3 -3 9 . . . . . . . 1 -1 -3 3 . . . .
X.19 21 -3 5 -3 -3 . . . . . . . -1 -1 3 3 . . . .
X.20 21 -3 5 -3 -3 . . . . . . . 1 1 -3 -3 . . . .
A = E(3)^2
= (-1-Sqrt(-3))/2 = -1-b3
B = 2*E(3)
= -1+Sqrt(-3) = 2b3
|