Group action invariants
| Degree $n$ : | $14$ | |
| Transitive number $t$ : | $12$ | |
| Group : | $C_7:D_7.C_2$ | |
| CHM label : | $1/2[D(7)^{2}]2$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (2,4,6,8,10,12,14), (1,6,13,8)(2,9,12,5)(3,4,11,10)(7,14), (1,13)(2,12)(3,11)(4,10)(5,9)(6,8) | |
| $|\Aut(F/K)|$: | $1$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ 4: $C_4$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 7: None
Low degree siblings
14T12 x 3, 28T35 x 4Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1 $ | $49$ | $2$ | $( 3,13)( 4,14)( 5,11)( 6,12)( 7, 9)( 8,10)$ |
| $ 7, 1, 1, 1, 1, 1, 1, 1 $ | $4$ | $7$ | $( 2, 4, 6, 8,10,12,14)$ |
| $ 7, 1, 1, 1, 1, 1, 1, 1 $ | $4$ | $7$ | $( 2, 6,10,14, 4, 8,12)$ |
| $ 7, 1, 1, 1, 1, 1, 1, 1 $ | $4$ | $7$ | $( 2, 8,14, 6,12, 4,10)$ |
| $ 4, 4, 4, 2 $ | $49$ | $4$ | $( 1, 2)( 3, 4,13,14)( 5, 6,11,12)( 7, 8, 9,10)$ |
| $ 4, 4, 4, 2 $ | $49$ | $4$ | $( 1, 2)( 3,14,13, 4)( 5,12,11, 6)( 7,10, 9, 8)$ |
| $ 7, 7 $ | $4$ | $7$ | $( 1, 3, 5, 7, 9,11,13)( 2, 4, 6, 8,10,12,14)$ |
| $ 7, 7 $ | $4$ | $7$ | $( 1, 3, 5, 7, 9,11,13)( 2, 6,10,14, 4, 8,12)$ |
| $ 7, 7 $ | $4$ | $7$ | $( 1, 3, 5, 7, 9,11,13)( 2, 8,14, 6,12, 4,10)$ |
| $ 7, 7 $ | $4$ | $7$ | $( 1, 3, 5, 7, 9,11,13)( 2,10, 4,12, 6,14, 8)$ |
| $ 7, 7 $ | $4$ | $7$ | $( 1, 3, 5, 7, 9,11,13)( 2,12, 8, 4,14,10, 6)$ |
| $ 7, 7 $ | $4$ | $7$ | $( 1, 5, 9,13, 3, 7,11)( 2, 6,10,14, 4, 8,12)$ |
| $ 7, 7 $ | $4$ | $7$ | $( 1, 5, 9,13, 3, 7,11)( 2, 8,14, 6,12, 4,10)$ |
| $ 7, 7 $ | $4$ | $7$ | $( 1, 5, 9,13, 3, 7,11)( 2,10, 4,12, 6,14, 8)$ |
| $ 7, 7 $ | $4$ | $7$ | $( 1, 7,13, 5,11, 3, 9)( 2, 8,14, 6,12, 4,10)$ |
Group invariants
| Order: | $196=2^{2} \cdot 7^{2}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [196, 8] |
| Character table: |
2 2 2 . . . 2 2 . . . . . . . . .
7 2 . 2 2 2 . . 2 2 2 2 2 2 2 2 2
1a 2a 7a 7b 7c 4a 4b 7d 7e 7f 7g 7h 7i 7j 7k 7l
2P 1a 1a 7b 7c 7a 2a 2a 7i 7k 7e 7h 7j 7l 7g 7f 7d
3P 1a 2a 7c 7a 7b 4b 4a 7l 7f 7k 7j 7g 7d 7h 7e 7i
5P 1a 2a 7b 7c 7a 4a 4b 7i 7k 7e 7h 7j 7l 7g 7f 7d
7P 1a 2a 1a 1a 1a 4b 4a 1a 1a 1a 1a 1a 1a 1a 1a 1a
X.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 1 1 1 1 -1 -1 1 1 1 1 1 1 1 1 1
X.3 1 -1 1 1 1 J -J 1 1 1 1 1 1 1 1 1
X.4 1 -1 1 1 1 -J J 1 1 1 1 1 1 1 1 1
X.5 4 . A C B . . D G I I G E H H F
X.6 4 . B A C . . F I H H I D G G E
X.7 4 . C B A . . E H G G H F I I D
X.8 4 . D E F . . C I H H I B G G A
X.9 4 . E F D . . B G I I G A H H C
X.10 4 . F D E . . A H G G H C I I B
X.11 4 . G H I . . I C A E F G D B H
X.12 4 . H I G . . G B C F D H E A I
X.13 4 . I G H . . H A B D E I F C G
X.14 4 . G H I . . I F E A C G B D H
X.15 4 . H I G . . G D F C B H A E I
X.16 4 . I G H . . H E D B A I C F G
A = -2*E(7)-E(7)^2-2*E(7)^3-2*E(7)^4-E(7)^5-2*E(7)^6
B = -E(7)-2*E(7)^2-2*E(7)^3-2*E(7)^4-2*E(7)^5-E(7)^6
C = -2*E(7)-2*E(7)^2-E(7)^3-E(7)^4-2*E(7)^5-2*E(7)^6
D = 2*E(7)^2+2*E(7)^5
E = 2*E(7)^3+2*E(7)^4
F = 2*E(7)+2*E(7)^6
G = E(7)^2+E(7)^3+E(7)^4+E(7)^5
H = E(7)+E(7)^3+E(7)^4+E(7)^6
I = E(7)+E(7)^2+E(7)^5+E(7)^6
J = -E(4)
= -Sqrt(-1) = -i
|