Group action invariants
| Degree $n$ : | $14$ | |
| Transitive number $t$ : | $39$ | |
| Group : | $\PGL(2,13)$ | |
| CHM label : | $L(14):2=PGL(2,13)$ | |
| Parity: | $-1$ | |
| Primitive: | Yes | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,12)(2,6)(3,4)(7,11)(9,10)(13,14), (1,2,4,8,3,6,12,11,9,5,10,7), (1,2,3,4,5,6,7,8,9,10,11,12,14) | |
| $|\Aut(F/K)|$: | $1$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 7: None
Low degree siblings
28T201, 42T284Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 2, 2, 2 $ | $78$ | $2$ | $( 1, 5)( 2,14)( 3,10)( 4, 8)( 6,12)( 7, 9)(11,13)$ |
| $ 7, 7 $ | $156$ | $7$ | $( 1, 6, 3, 8, 9,13,14)( 2, 5,12,10, 4, 7,11)$ |
| $ 7, 7 $ | $156$ | $7$ | $( 1, 9, 6,13, 3,14, 8)( 2, 4, 5, 7,12,11,10)$ |
| $ 7, 7 $ | $156$ | $7$ | $( 1, 3, 9,14, 6, 8,13)( 2,12, 4,11, 5,10, 7)$ |
| $ 14 $ | $156$ | $14$ | $( 1, 7, 6,11, 3, 2, 8, 5, 9,12,13,10,14, 4)$ |
| $ 14 $ | $156$ | $14$ | $( 1,11, 8,12,14, 7, 3, 5,13, 4, 6, 2, 9,10)$ |
| $ 14 $ | $156$ | $14$ | $( 1,12, 3, 4, 9,11,14, 5, 6,10, 8, 7,13, 2)$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1 $ | $91$ | $2$ | $( 1, 9)( 2, 8)( 3, 7)( 4, 6)(10,14)(11,12)$ |
| $ 4, 4, 4, 1, 1 $ | $182$ | $4$ | $( 1,12, 9,11)( 2, 7, 8, 3)( 4,10, 6,14)$ |
| $ 3, 3, 3, 3, 1, 1 $ | $182$ | $3$ | $( 1, 6, 8)( 2, 9, 4)( 3,12,14)( 7,11,10)$ |
| $ 6, 6, 1, 1 $ | $182$ | $6$ | $( 1, 2, 6, 9, 8, 4)( 3,10,12, 7,14,11)$ |
| $ 12, 1, 1 $ | $182$ | $12$ | $( 1,10, 2,12, 6, 7, 9,14, 8,11, 4, 3)$ |
| $ 12, 1, 1 $ | $182$ | $12$ | $( 1,14, 2,11, 6, 3, 9,10, 8,12, 4, 7)$ |
| $ 13, 1 $ | $168$ | $13$ | $( 1, 2, 5,13, 6, 9,10, 4, 3,11,14, 8, 7)$ |
Group invariants
| Order: | $2184=2^{3} \cdot 3 \cdot 7 \cdot 13$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | No | |
| GAP id: | Data not available |
| Character table: |
2 3 . 2 3 2 2 2 2 2 1 1 1 1 1 1
3 1 . . 1 1 1 1 1 1 . . . . . .
7 1 . 1 . . . . . . 1 1 1 1 1 1
13 1 1 . . . . . . . . . . . . .
1a 13a 2a 2b 3a 4a 6a 12a 12b 7a 7b 7c 14a 14b 14c
2P 1a 13a 1a 1a 3a 2b 3a 6a 6a 7c 7a 7b 7b 7c 7a
3P 1a 13a 2a 2b 1a 4a 2b 4a 4a 7b 7c 7a 14b 14c 14a
5P 1a 13a 2a 2b 3a 4a 6a 12b 12a 7c 7a 7b 14c 14a 14b
7P 1a 13a 2a 2b 3a 4a 6a 12b 12a 1a 1a 1a 2a 2a 2a
11P 1a 13a 2a 2b 3a 4a 6a 12a 12b 7b 7c 7a 14b 14c 14a
13P 1a 1a 2a 2b 3a 4a 6a 12a 12b 7a 7b 7c 14a 14b 14c
X.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 1 -1 1 1 -1 1 -1 -1 1 1 1 -1 -1 -1
X.3 12 -1 -2 . . . . . . B C D D B C
X.4 12 -1 -2 . . . . . . C D B B C D
X.5 12 -1 -2 . . . . . . D B C C D B
X.6 12 -1 2 . . . . . . B C D -D -B -C
X.7 12 -1 2 . . . . . . C D B -B -C -D
X.8 12 -1 2 . . . . . . D B C -C -D -B
X.9 13 . 1 1 1 -1 1 -1 -1 -1 -1 -1 1 1 1
X.10 13 . -1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1
X.11 14 1 . 2 -1 -2 -1 1 1 . . . . . .
X.12 14 1 . 2 -1 2 -1 -1 -1 . . . . . .
X.13 14 1 . -2 2 . -2 . . . . . . . .
X.14 14 1 . -2 -1 . 1 A -A . . . . . .
X.15 14 1 . -2 -1 . 1 -A A . . . . . .
A = -E(12)^7+E(12)^11
= Sqrt(3) = r3
B = -E(7)-E(7)^6
C = -E(7)^3-E(7)^4
D = -E(7)^2-E(7)^5
|