Group action invariants
| Degree $n$ : | $14$ | |
| Transitive number $t$ : | $38$ | |
| CHM label : | $[2^{7}]D(7)=2wrD(7)$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (7,14), (1,13)(2,12)(3,11)(4,10)(5,9)(6,8), (1,3,5,7,9,11,13)(2,4,6,8,10,12,14) | |
| $|\Aut(F/K)|$: | $2$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 3 4: $C_2^2$ 14: $D_{7}$ 28: $D_{14}$ 896: 14T27 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 7: $D_{7}$
Low degree siblings
14T38 x 13, 28T175, 28T185 x 21, 28T186 x 7, 28T193 x 7, 28T194 x 42, 28T195 x 42, 28T196 x 14, 28T197 x 14, 32T97728Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $7$ | $2$ | $( 7,14)$ |
| $ 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $7$ | $2$ | $( 2, 9)( 7,14)$ |
| $ 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $7$ | $2$ | $( 2, 9)( 5,12)$ |
| $ 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $7$ | $2$ | $( 2, 9)( 5,12)( 7,14)$ |
| $ 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $7$ | $2$ | $( 4,11)( 5,12)$ |
| $ 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $14$ | $2$ | $( 4,11)( 5,12)( 7,14)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1 $ | $7$ | $2$ | $( 2, 9)( 4,11)( 5,12)( 7,14)$ |
| $ 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $7$ | $2$ | $( 5,12)( 6,13)( 7,14)$ |
| $ 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $7$ | $2$ | $( 2, 9)( 5,12)( 6,13)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1 $ | $14$ | $2$ | $( 2, 9)( 5,12)( 6,13)( 7,14)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1 $ | $7$ | $2$ | $( 4,11)( 5,12)( 6,13)( 7,14)$ |
| $ 2, 2, 2, 2, 2, 1, 1, 1, 1 $ | $7$ | $2$ | $( 2, 9)( 4,11)( 5,12)( 6,13)( 7,14)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1 $ | $7$ | $2$ | $( 2, 9)( 3,10)( 6,13)( 7,14)$ |
| $ 2, 2, 2, 2, 2, 1, 1, 1, 1 $ | $7$ | $2$ | $( 2, 9)( 3,10)( 5,12)( 6,13)( 7,14)$ |
| $ 2, 2, 2, 2, 2, 1, 1, 1, 1 $ | $7$ | $2$ | $( 3,10)( 4,11)( 5,12)( 6,13)( 7,14)$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1 $ | $7$ | $2$ | $( 2, 9)( 3,10)( 4,11)( 5,12)( 6,13)( 7,14)$ |
| $ 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 8)( 2, 9)( 3,10)( 4,11)( 5,12)( 6,13)( 7,14)$ |
| $ 7, 7 $ | $128$ | $7$ | $( 1, 7,13, 5,11, 3, 9)( 2, 8,14, 6,12, 4,10)$ |
| $ 14 $ | $128$ | $14$ | $( 1,14, 6,12, 4,10, 2, 8, 7,13, 5,11, 3, 9)$ |
| $ 7, 7 $ | $128$ | $7$ | $( 1, 5, 9,13, 3, 7,11)( 2, 6,10,14, 4, 8,12)$ |
| $ 14 $ | $128$ | $14$ | $( 1, 5, 9,13, 3,14, 4, 8,12, 2, 6,10, 7,11)$ |
| $ 7, 7 $ | $128$ | $7$ | $( 1,13,11, 9, 7, 5, 3)( 2,14,12,10, 8, 6, 4)$ |
| $ 14 $ | $128$ | $14$ | $( 1,13,11, 9,14,12,10, 8, 6, 4, 2, 7, 5, 3)$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1 $ | $56$ | $2$ | $( 1,13)( 2,12)( 3,11)( 4,10)( 5, 9)( 6, 8)$ |
| $ 2, 2, 2, 2, 2, 2, 2 $ | $56$ | $2$ | $( 1,13)( 2,12)( 3,11)( 4,10)( 5, 9)( 6, 8)( 7,14)$ |
| $ 4, 2, 2, 2, 2, 1, 1 $ | $56$ | $4$ | $( 1,13)( 2,12, 9, 5)( 3,11)( 4,10)( 6, 8)$ |
| $ 4, 2, 2, 2, 2, 2 $ | $56$ | $4$ | $( 1,13)( 2,12, 9, 5)( 3,11)( 4,10)( 6, 8)( 7,14)$ |
| $ 4, 2, 2, 2, 2, 1, 1 $ | $56$ | $4$ | $( 1,13)( 2,12)( 3, 4,10,11)( 5, 9)( 6, 8)$ |
| $ 4, 2, 2, 2, 2, 2 $ | $56$ | $4$ | $( 1,13)( 2,12)( 3, 4,10,11)( 5, 9)( 6, 8)( 7,14)$ |
| $ 4, 4, 2, 2, 1, 1 $ | $56$ | $4$ | $( 1,13)( 2,12, 9, 5)( 3, 4,10,11)( 6, 8)$ |
| $ 4, 4, 2, 2, 2 $ | $56$ | $4$ | $( 1,13)( 2,12, 9, 5)( 3, 4,10,11)( 6, 8)( 7,14)$ |
| $ 4, 2, 2, 2, 2, 1, 1 $ | $56$ | $4$ | $( 1, 6, 8,13)( 2,12)( 3,11)( 4,10)( 5, 9)$ |
| $ 4, 2, 2, 2, 2, 2 $ | $56$ | $4$ | $( 1, 6, 8,13)( 2,12)( 3,11)( 4,10)( 5, 9)( 7,14)$ |
| $ 4, 4, 2, 2, 1, 1 $ | $56$ | $4$ | $( 1, 6, 8,13)( 2,12, 9, 5)( 3,11)( 4,10)$ |
| $ 4, 4, 2, 2, 2 $ | $56$ | $4$ | $( 1, 6, 8,13)( 2,12, 9, 5)( 3,11)( 4,10)( 7,14)$ |
| $ 4, 4, 2, 2, 1, 1 $ | $56$ | $4$ | $( 1, 6, 8,13)( 2,12)( 3, 4,10,11)( 5, 9)$ |
| $ 4, 4, 2, 2, 2 $ | $56$ | $4$ | $( 1, 6, 8,13)( 2,12)( 3, 4,10,11)( 5, 9)( 7,14)$ |
| $ 4, 4, 4, 1, 1 $ | $56$ | $4$ | $( 1, 6, 8,13)( 2,12, 9, 5)( 3, 4,10,11)$ |
| $ 4, 4, 4, 2 $ | $56$ | $4$ | $( 1, 6, 8,13)( 2,12, 9, 5)( 3, 4,10,11)( 7,14)$ |
Group invariants
| Order: | $1792=2^{8} \cdot 7$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [1792, 1083553] |
| Character table: Data not available. |