Show commands: Magma
Group invariants
| Abstract group: | $C_7^2:C_{12}$ |
| |
| Order: | $588=2^{2} \cdot 3 \cdot 7^{2}$ |
| |
| Cyclic: | no |
| |
| Abelian: | no |
| |
| Solvable: | yes |
| |
| Nilpotency class: | not nilpotent |
|
Group action invariants
| Degree $n$: | $14$ |
| |
| Transitive number $t$: | $23$ |
| |
| CHM label: | $[1/6_+.F_{42}(7)^{2}]2_{2}$ | ||
| Parity: | $1$ |
| |
| Primitive: | no |
| |
| $\card{\Aut(F/K)}$: | $1$ |
| |
| Generators: | $(2,4,6,8,10,12,14)$, $(1,9,11)(2,4,8)(3,13,5)(6,12,10)$, $(1,6,13,8)(2,9,12,5)(3,4,11,10)(7,14)$, $(1,13)(2,12)(3,11)(4,10)(5,9)(6,8)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ $3$: $C_3$ $4$: $C_4$ $6$: $C_6$ $12$: $C_{12}$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 7: None
Low degree siblings
14T23 x 3, 28T76 x 4, 42T120 x 4Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
| Label | Cycle Type | Size | Order | Index | Representative |
| 1A | $1^{14}$ | $1$ | $1$ | $0$ | $()$ |
| 2A | $2^{6},1^{2}$ | $49$ | $2$ | $6$ | $( 1,13)( 2,10)( 3,11)( 4, 8)( 5, 9)(12,14)$ |
| 3A1 | $3^{4},1^{2}$ | $49$ | $3$ | $8$ | $( 1,11, 9)( 2, 4,12)( 3, 5,13)( 8,14,10)$ |
| 3A-1 | $3^{4},1^{2}$ | $49$ | $3$ | $8$ | $( 1, 9,11)( 2,12, 4)( 3,13, 5)( 8,10,14)$ |
| 4A1 | $4^{3},2$ | $49$ | $4$ | $10$ | $( 1,12,13,14)( 2, 3,10,11)( 4, 5, 8, 9)( 6, 7)$ |
| 4A-1 | $4^{3},2$ | $49$ | $4$ | $10$ | $( 1,14,13,12)( 2,11,10, 3)( 4, 9, 8, 5)( 6, 7)$ |
| 6A1 | $6^{2},1^{2}$ | $49$ | $6$ | $10$ | $( 1, 5,11,13, 9, 3)( 2,14, 4,10,12, 8)$ |
| 6A-1 | $6^{2},1^{2}$ | $49$ | $6$ | $10$ | $( 1, 3, 9,13,11, 5)( 2, 8,12,10, 4,14)$ |
| 7A | $7^{2}$ | $12$ | $7$ | $12$ | $( 1, 5, 9,13, 3, 7,11)( 2, 8,14, 6,12, 4,10)$ |
| 7B | $7,1^{7}$ | $12$ | $7$ | $6$ | $( 2, 4, 6, 8,10,12,14)$ |
| 7C | $7^{2}$ | $12$ | $7$ | $12$ | $( 1, 5, 9,13, 3, 7,11)( 2,10, 4,12, 6,14, 8)$ |
| 7D | $7^{2}$ | $12$ | $7$ | $12$ | $( 1, 5, 9,13, 3, 7,11)( 2,12, 8, 4,14,10, 6)$ |
| 12A1 | $12,2$ | $49$ | $12$ | $12$ | $( 1,10, 5,12,11, 8,13, 2, 9,14, 3, 4)( 6, 7)$ |
| 12A-1 | $12,2$ | $49$ | $12$ | $12$ | $( 1, 4, 3,14, 9, 2,13, 8,11,12, 5,10)( 6, 7)$ |
| 12A5 | $12,2$ | $49$ | $12$ | $12$ | $( 1, 8, 3,12, 9,10,13, 4,11,14, 5, 2)( 6, 7)$ |
| 12A-5 | $12,2$ | $49$ | $12$ | $12$ | $( 1, 2, 5,14,11, 4,13,10, 9,12, 3, 8)( 6, 7)$ |
Malle's constant $a(G)$: $1/6$
Character table
| 1A | 2A | 3A1 | 3A-1 | 4A1 | 4A-1 | 6A1 | 6A-1 | 7A | 7B | 7C | 7D | 12A1 | 12A-1 | 12A5 | 12A-5 | ||
| Size | 1 | 49 | 49 | 49 | 49 | 49 | 49 | 49 | 12 | 12 | 12 | 12 | 49 | 49 | 49 | 49 | |
| 2 P | 1A | 1A | 3A-1 | 3A1 | 2A | 2A | 3A1 | 3A-1 | 7A | 7B | 7C | 7D | 6A1 | 6A-1 | 6A-1 | 6A1 | |
| 3 P | 1A | 2A | 1A | 1A | 4A-1 | 4A1 | 2A | 2A | 7A | 7B | 7C | 7D | 4A1 | 4A-1 | 4A1 | 4A-1 | |
| 7 P | 1A | 2A | 3A1 | 3A-1 | 4A-1 | 4A1 | 6A1 | 6A-1 | 1A | 1A | 1A | 1A | 12A-5 | 12A5 | 12A-1 | 12A1 | |
| Type | |||||||||||||||||
| 588.34.1a | R | ||||||||||||||||
| 588.34.1b | R | ||||||||||||||||
| 588.34.1c1 | C | ||||||||||||||||
| 588.34.1c2 | C | ||||||||||||||||
| 588.34.1d1 | C | ||||||||||||||||
| 588.34.1d2 | C | ||||||||||||||||
| 588.34.1e1 | C | ||||||||||||||||
| 588.34.1e2 | C | ||||||||||||||||
| 588.34.1f1 | C | ||||||||||||||||
| 588.34.1f2 | C | ||||||||||||||||
| 588.34.1f3 | C | ||||||||||||||||
| 588.34.1f4 | C | ||||||||||||||||
| 588.34.12a | R | ||||||||||||||||
| 588.34.12b | R | ||||||||||||||||
| 588.34.12c | R | ||||||||||||||||
| 588.34.12d | R |
Regular extensions
Data not computed