Group action invariants
| Degree $n$ : | $14$ | |
| Transitive number $t$ : | $23$ | |
| CHM label : | $[1/6_+.F_{42}(7)^{2}]2_{2}$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (2,4,6,8,10,12,14), (1,9,11)(2,4,8)(3,13,5)(6,12,10), (1,6,13,8)(2,9,12,5)(3,4,11,10)(7,14), (1,13)(2,12)(3,11)(4,10)(5,9)(6,8) | |
| $|\Aut(F/K)|$: | $1$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ 3: $C_3$ 4: $C_4$ 6: $C_6$ 12: $C_{12}$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 7: None
Low degree siblings
14T23 x 3, 28T76 x 4, 42T120 x 4Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 7, 1, 1, 1, 1, 1, 1, 1 $ | $12$ | $7$ | $( 2, 4, 6, 8,10,12,14)$ |
| $ 7, 7 $ | $12$ | $7$ | $( 1, 3, 5, 7, 9,11,13)( 2, 4, 6, 8,10,12,14)$ |
| $ 7, 7 $ | $12$ | $7$ | $( 1, 3, 5, 7, 9,11,13)( 2, 8,14, 6,12, 4,10)$ |
| $ 7, 7 $ | $12$ | $7$ | $( 1, 3, 5, 7, 9,11,13)( 2,10, 4,12, 6,14, 8)$ |
| $ 3, 3, 3, 3, 1, 1 $ | $49$ | $3$ | $( 3, 5, 9)( 4, 6,10)( 7,13,11)( 8,14,12)$ |
| $ 3, 3, 3, 3, 1, 1 $ | $49$ | $3$ | $( 3, 9, 5)( 4,10, 6)( 7,11,13)( 8,12,14)$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1 $ | $49$ | $2$ | $( 3,13)( 4,14)( 5,11)( 6,12)( 7, 9)( 8,10)$ |
| $ 6, 6, 1, 1 $ | $49$ | $6$ | $( 3,11, 9,13, 5, 7)( 4,12,10,14, 6, 8)$ |
| $ 6, 6, 1, 1 $ | $49$ | $6$ | $( 3, 7, 5,13, 9,11)( 4, 8, 6,14,10,12)$ |
| $ 4, 4, 4, 2 $ | $49$ | $4$ | $( 1, 6,13, 8)( 2, 9,12, 5)( 3, 4,11,10)( 7,14)$ |
| $ 12, 2 $ | $49$ | $12$ | $( 1,10, 5, 2, 3, 6,11, 4, 7,12, 9, 8)(13,14)$ |
| $ 12, 2 $ | $49$ | $12$ | $( 1, 4,13,12, 3,10, 9,14,11, 6, 7, 8)( 2, 5)$ |
| $ 4, 4, 4, 2 $ | $49$ | $4$ | $( 1,12,11, 8)( 2, 7, 4, 5)( 3,14, 9, 6)(10,13)$ |
| $ 12, 2 $ | $49$ | $12$ | $( 1, 8)( 2,13, 4, 9,10,11,14, 3,12, 7, 6, 5)$ |
| $ 12, 2 $ | $49$ | $12$ | $( 1,14, 5, 2,11,12,13, 6, 9, 4, 3, 8)( 7,10)$ |
Group invariants
| Order: | $588=2^{2} \cdot 3 \cdot 7^{2}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [588, 34] |
| Character table: |
2 2 . . . . 2 2 2 2 2 2 2 2 2 2 2
3 1 . . . . 1 1 1 1 1 1 1 1 1 1 1
7 2 2 2 2 2 . . . . . . . . . . .
1a 7a 7b 7c 7d 3a 3b 2a 6a 6b 4a 12a 12b 4b 12c 12d
2P 1a 7a 7b 7c 7d 3b 3a 1a 3b 3a 2a 6b 6a 2a 6b 6a
3P 1a 7a 7b 7c 7d 1a 1a 2a 2a 2a 4b 4b 4b 4a 4a 4a
5P 1a 7a 7b 7c 7d 3b 3a 2a 6b 6a 4a 12b 12a 4b 12d 12c
7P 1a 1a 1a 1a 1a 3a 3b 2a 6a 6b 4b 12c 12d 4a 12a 12b
11P 1a 7a 7b 7c 7d 3b 3a 2a 6b 6a 4b 12d 12c 4a 12b 12a
X.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 1 1 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1
X.3 1 1 1 1 1 1 1 -1 -1 -1 B B B -B -B -B
X.4 1 1 1 1 1 1 1 -1 -1 -1 -B -B -B B B B
X.5 1 1 1 1 1 A /A -1 -A -/A B C -/C -B -C /C
X.6 1 1 1 1 1 A /A -1 -A -/A -B -C /C B C -/C
X.7 1 1 1 1 1 /A A -1 -/A -A B -/C C -B /C -C
X.8 1 1 1 1 1 /A A -1 -/A -A -B /C -C B -/C C
X.9 1 1 1 1 1 A /A 1 A /A -1 -A -/A -1 -A -/A
X.10 1 1 1 1 1 /A A 1 /A A -1 -/A -A -1 -/A -A
X.11 1 1 1 1 1 A /A 1 A /A 1 A /A 1 A /A
X.12 1 1 1 1 1 /A A 1 /A A 1 /A A 1 /A A
X.13 12 5 -2 -2 -2 . . . . . . . . . . .
X.14 12 -2 5 -2 -2 . . . . . . . . . . .
X.15 12 -2 -2 -2 5 . . . . . . . . . . .
X.16 12 -2 -2 5 -2 . . . . . . . . . . .
A = E(3)^2
= (-1-Sqrt(-3))/2 = -1-b3
B = -E(4)
= -Sqrt(-1) = -i
C = -E(12)^11
|