Group action invariants
| Degree $n$ : | $14$ | |
| Transitive number $t$ : | $13$ | |
| Group : | $D_7^2$ | |
| CHM label : | $[1/2.D(7)^{2}]2$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (2,4,6,8,10,12,14), (1,8)(2,9)(3,10)(4,11)(5,12)(6,13)(7,14), (1,13)(2,12)(3,11)(4,10)(5,9)(6,8) | |
| $|\Aut(F/K)|$: | $1$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 3 4: $C_2^2$ 14: $D_{7}$ x 2 28: $D_{14}$ x 2 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 7: None
Low degree siblings
14T13 x 2, 28T36 x 3Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1 $ | $49$ | $2$ | $( 3,13)( 4,14)( 5,11)( 6,12)( 7, 9)( 8,10)$ |
| $ 7, 1, 1, 1, 1, 1, 1, 1 $ | $4$ | $7$ | $( 2, 4, 6, 8,10,12,14)$ |
| $ 7, 1, 1, 1, 1, 1, 1, 1 $ | $4$ | $7$ | $( 2, 6,10,14, 4, 8,12)$ |
| $ 7, 1, 1, 1, 1, 1, 1, 1 $ | $4$ | $7$ | $( 2, 8,14, 6,12, 4,10)$ |
| $ 2, 2, 2, 2, 2, 2, 2 $ | $7$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)$ |
| $ 2, 2, 2, 2, 2, 2, 2 $ | $7$ | $2$ | $( 1, 2)( 3,14)( 4,13)( 5,12)( 6,11)( 7,10)( 8, 9)$ |
| $ 14 $ | $14$ | $14$ | $( 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13,14)$ |
| $ 14 $ | $14$ | $14$ | $( 1, 2, 3,14, 5,12, 7,10, 9, 8,11, 6,13, 4)$ |
| $ 14 $ | $14$ | $14$ | $( 1, 2, 5, 6, 9,10,13,14, 3, 4, 7, 8,11,12)$ |
| $ 14 $ | $14$ | $14$ | $( 1, 2, 5,12, 9, 8,13, 4, 3,14, 7,10,11, 6)$ |
| $ 14 $ | $14$ | $14$ | $( 1, 2, 7, 8,13,14, 5, 6,11,12, 3, 4, 9,10)$ |
| $ 14 $ | $14$ | $14$ | $( 1, 2, 7,10,13, 4, 5,12,11, 6, 3,14, 9, 8)$ |
| $ 7, 7 $ | $2$ | $7$ | $( 1, 3, 5, 7, 9,11,13)( 2, 4, 6, 8,10,12,14)$ |
| $ 7, 7 $ | $4$ | $7$ | $( 1, 3, 5, 7, 9,11,13)( 2, 6,10,14, 4, 8,12)$ |
| $ 7, 7 $ | $4$ | $7$ | $( 1, 3, 5, 7, 9,11,13)( 2, 8,14, 6,12, 4,10)$ |
| $ 7, 7 $ | $4$ | $7$ | $( 1, 3, 5, 7, 9,11,13)( 2,10, 4,12, 6,14, 8)$ |
| $ 7, 7 $ | $4$ | $7$ | $( 1, 3, 5, 7, 9,11,13)( 2,12, 8, 4,14,10, 6)$ |
| $ 7, 7 $ | $2$ | $7$ | $( 1, 3, 5, 7, 9,11,13)( 2,14,12,10, 8, 6, 4)$ |
| $ 7, 7 $ | $2$ | $7$ | $( 1, 5, 9,13, 3, 7,11)( 2, 6,10,14, 4, 8,12)$ |
| $ 7, 7 $ | $4$ | $7$ | $( 1, 5, 9,13, 3, 7,11)( 2, 8,14, 6,12, 4,10)$ |
| $ 7, 7 $ | $4$ | $7$ | $( 1, 5, 9,13, 3, 7,11)( 2,10, 4,12, 6,14, 8)$ |
| $ 7, 7 $ | $2$ | $7$ | $( 1, 5, 9,13, 3, 7,11)( 2,12, 8, 4,14,10, 6)$ |
| $ 7, 7 $ | $2$ | $7$ | $( 1, 7,13, 5,11, 3, 9)( 2, 8,14, 6,12, 4,10)$ |
| $ 7, 7 $ | $2$ | $7$ | $( 1, 7,13, 5,11, 3, 9)( 2,10, 4,12, 6,14, 8)$ |
Group invariants
| Order: | $196=2^{2} \cdot 7^{2}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [196, 9] |
| Character table: Data not available. |