Group action invariants
| Degree $n$ : | $14$ | |
| Transitive number $t$ : | $37$ | |
| CHM label : | $[1/2.F_{42}(7)^{2}]2$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (2,4,6,8,10,12,14), (1,8)(2,9)(3,10)(4,11)(5,12)(6,13)(7,14), (2,4,8)(6,12,10), (1,13)(2,12)(3,11)(4,10)(5,9)(6,8) | |
| $|\Aut(F/K)|$: | $1$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 3 3: $C_3$ 4: $C_2^2$ 6: $S_3$, $C_6$ x 3 12: $D_{6}$, $C_6\times C_2$ 18: $S_3\times C_3$ 36: $C_6\times S_3$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 7: None
Low degree siblings
21T29 x 2, 28T170, 42T223 x 2, 42T224 x 2, 42T225 x 2, 42T252, 42T253, 42T254, 42T255Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 7, 1, 1, 1, 1, 1, 1, 1 $ | $12$ | $7$ | $( 2, 4, 6, 8,10,12,14)$ |
| $ 7, 7 $ | $18$ | $7$ | $( 1, 3, 5, 7, 9,11,13)( 2, 4, 6, 8,10,12,14)$ |
| $ 7, 7 $ | $18$ | $7$ | $( 1, 3, 5, 7, 9,11,13)( 2, 8,14, 6,12, 4,10)$ |
| $ 3, 3, 3, 3, 1, 1 $ | $98$ | $3$ | $( 3, 9, 5)( 4, 6,10)( 7,11,13)( 8,14,12)$ |
| $ 2, 2, 2, 2, 2, 2, 2 $ | $21$ | $2$ | $( 1, 8)( 2, 9)( 3,10)( 4,11)( 5,12)( 6,13)( 7,14)$ |
| $ 14 $ | $126$ | $14$ | $( 1,10, 3,12, 5,14, 7, 2, 9, 4,11, 6,13, 8)$ |
| $ 3, 3, 1, 1, 1, 1, 1, 1, 1, 1 $ | $14$ | $3$ | $( 4, 6,10)( 8,14,12)$ |
| $ 7, 3, 3, 1 $ | $84$ | $21$ | $( 1, 3, 5, 7, 9,11,13)( 4, 6,10)( 8,14,12)$ |
| $ 3, 3, 3, 3, 1, 1 $ | $49$ | $3$ | $( 3, 9, 5)( 4,10, 6)( 7,11,13)( 8,12,14)$ |
| $ 6, 6, 2 $ | $147$ | $6$ | $( 1, 8, 7,14, 5,12)( 2, 9)( 3,10,11, 4,13, 6)$ |
| $ 3, 3, 1, 1, 1, 1, 1, 1, 1, 1 $ | $14$ | $3$ | $( 4,10, 6)( 8,12,14)$ |
| $ 7, 3, 3, 1 $ | $84$ | $21$ | $( 1, 3, 5, 7, 9,11,13)( 4,10, 6)( 8,12,14)$ |
| $ 3, 3, 3, 3, 1, 1 $ | $49$ | $3$ | $( 3, 5, 9)( 4, 6,10)( 7,13,11)( 8,14,12)$ |
| $ 6, 6, 2 $ | $147$ | $6$ | $( 1, 8, 5,12, 7,14)( 2, 9)( 3,10,13, 6,11, 4)$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1 $ | $49$ | $2$ | $( 3,13)( 4,14)( 5,11)( 6,12)( 7, 9)( 8,10)$ |
| $ 6, 6, 1, 1 $ | $98$ | $6$ | $( 3, 7, 5,13, 9,11)( 4,12,10,14, 6, 8)$ |
| $ 14 $ | $126$ | $14$ | $( 1, 8, 3, 6, 5, 4, 7, 2, 9,14,11,12,13,10)$ |
| $ 2, 2, 2, 2, 2, 2, 2 $ | $21$ | $2$ | $( 1,10)( 2, 9)( 3, 8)( 4, 7)( 5, 6)(11,14)(12,13)$ |
| $ 6, 2, 2, 2, 1, 1 $ | $98$ | $6$ | $( 3,13)( 4,12,10,14, 6, 8)( 5,11)( 7, 9)$ |
| $ 6, 6, 1, 1 $ | $49$ | $6$ | $( 3, 7, 5,13, 9,11)( 4, 8, 6,14,10,12)$ |
| $ 6, 6, 2 $ | $147$ | $6$ | $( 1, 8,11,12, 3, 6)( 2, 9,14,13,10, 7)( 4, 5)$ |
| $ 6, 2, 2, 2, 1, 1 $ | $98$ | $6$ | $( 3,13)( 4, 8, 6,14,10,12)( 5,11)( 7, 9)$ |
| $ 6, 6, 1, 1 $ | $49$ | $6$ | $( 3,11, 9,13, 5, 7)( 4,12,10,14, 6, 8)$ |
| $ 6, 6, 2 $ | $147$ | $6$ | $( 1, 8,13,10, 5, 4)( 2, 9,14, 3, 6, 7)(11,12)$ |
Group invariants
| Order: | $1764=2^{2} \cdot 3^{2} \cdot 7^{2}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [1764, 134] |
| Character table: Data not available. |