Group action invariants
| Degree $n$ : | $14$ | |
| Transitive number $t$ : | $5$ | |
| Group : | $(C_7:C_3) \times C_2$ | |
| CHM label : | $F_{21}(7)[x]2$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,9,11)(2,4,8)(3,13,5)(6,12,10), (1,8)(2,9)(3,10)(4,11)(5,12)(6,13)(7,14), (1,3,5,7,9,11,13)(2,4,6,8,10,12,14) | |
| $|\Aut(F/K)|$: | $2$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ 3: $C_3$ 6: $C_6$ 21: $C_7:C_3$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 7: $C_7:C_3$
Low degree siblings
42T2Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 3, 3, 3, 3, 1, 1 $ | $7$ | $3$ | $( 2,10,12)( 3, 5, 9)( 4,14, 6)( 7,13,11)$ |
| $ 3, 3, 3, 3, 1, 1 $ | $7$ | $3$ | $( 2,12,10)( 3, 9, 5)( 4, 6,14)( 7,11,13)$ |
| $ 14 $ | $3$ | $14$ | $( 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13,14)$ |
| $ 6, 6, 2 $ | $7$ | $6$ | $( 1, 2,11, 8, 9, 4)( 3, 6, 5,10,13,12)( 7,14)$ |
| $ 6, 6, 2 $ | $7$ | $6$ | $( 1, 2,13, 8, 9, 6)( 3,10)( 4, 7,12,11,14, 5)$ |
| $ 7, 7 $ | $3$ | $7$ | $( 1, 3, 5, 7, 9,11,13)( 2, 4, 6, 8,10,12,14)$ |
| $ 14 $ | $3$ | $14$ | $( 1, 4, 7,10,13, 2, 5, 8,11,14, 3, 6, 9,12)$ |
| $ 7, 7 $ | $3$ | $7$ | $( 1, 7,13, 5,11, 3, 9)( 2, 8,14, 6,12, 4,10)$ |
| $ 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 8)( 2, 9)( 3,10)( 4,11)( 5,12)( 6,13)( 7,14)$ |
Group invariants
| Order: | $42=2 \cdot 3 \cdot 7$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [42, 2] |
| Character table: |
2 1 1 1 1 1 1 1 1 1 1
3 1 1 1 . 1 1 . . . 1
7 1 . . 1 . . 1 1 1 1
1a 3a 3b 14a 6a 6b 7a 14b 7b 2a
2P 1a 3b 3a 7a 3b 3a 7a 7b 7b 1a
3P 1a 1a 1a 14b 2a 2a 7b 14a 7a 2a
5P 1a 3b 3a 14b 6b 6a 7b 14a 7a 2a
7P 1a 3a 3b 2a 6a 6b 1a 2a 1a 2a
11P 1a 3b 3a 14a 6b 6a 7a 14b 7b 2a
13P 1a 3a 3b 14b 6a 6b 7b 14a 7a 2a
X.1 1 1 1 1 1 1 1 1 1 1
X.2 1 1 1 -1 -1 -1 1 -1 1 -1
X.3 1 A /A -1 -A -/A 1 -1 1 -1
X.4 1 /A A -1 -/A -A 1 -1 1 -1
X.5 1 A /A 1 A /A 1 1 1 1
X.6 1 /A A 1 /A A 1 1 1 1
X.7 3 . . B . . -B /B -/B -3
X.8 3 . . /B . . -/B B -B -3
X.9 3 . . -/B . . -/B -B -B 3
X.10 3 . . -B . . -B -/B -/B 3
A = E(3)^2
= (-1-Sqrt(-3))/2 = -1-b3
B = -E(7)-E(7)^2-E(7)^4
= (1-Sqrt(-7))/2 = -b7
|