Group action invariants
| Degree $n$ : | $14$ | |
| Transitive number $t$ : | $10$ | |
| Group : | $\PSL(2,7)$ | |
| CHM label : | $L_{7}(14)$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,8)(2,13)(3,10)(4,12)(5,11)(6,9), (1,9,11)(2,4,8)(3,13,5)(6,12,10), (1,3,5,7,9,11,13)(2,4,6,8,10,12,14) | |
| $|\Aut(F/K)|$: | $2$ |
Low degree resolvents
NoneResolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 7: $\GL(3,2)$
Low degree siblings
7T5 x 2, 8T37, 14T10, 21T14, 24T284, 28T32, 42T37, 42T38 x 2Siblings are shown with degree $\leq 47$
A number field with this Galois group has exactly one arithmetically equivalent field.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 3, 3, 3, 3, 1, 1 $ | $56$ | $3$ | $( 2, 3, 6)( 4, 7,12)( 5,11,14)( 9,10,13)$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1 $ | $21$ | $2$ | $( 2, 4)( 3,10)( 5, 6)( 7,14)( 9,11)(12,13)$ |
| $ 7, 7 $ | $24$ | $7$ | $( 1, 2, 3, 7, 6, 4,12)( 5, 8, 9,10,14,13,11)$ |
| $ 4, 4, 4, 2 $ | $42$ | $4$ | $( 1, 2, 8, 9)( 3,12,13, 7)( 4,11)( 5, 6,14,10)$ |
| $ 7, 7 $ | $24$ | $7$ | $( 1, 2,12,11,10, 7,13)( 3,14, 6, 8, 9, 5, 4)$ |
Group invariants
| Order: | $168=2^{3} \cdot 3 \cdot 7$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | No | |
| GAP id: | [168, 42] |
| Character table: |
2 3 . 3 . 2 .
3 1 1 . . . .
7 1 . . 1 . 1
1a 3a 2a 7a 4a 7b
2P 1a 3a 1a 7a 2a 7b
3P 1a 1a 2a 7b 4a 7a
5P 1a 3a 2a 7b 4a 7a
7P 1a 3a 2a 1a 4a 1a
X.1 1 1 1 1 1 1
X.2 3 . -1 A 1 /A
X.3 3 . -1 /A 1 A
X.4 6 . 2 -1 . -1
X.5 7 1 -1 . -1 .
X.6 8 -1 . 1 . 1
A = E(7)^3+E(7)^5+E(7)^6
= (-1-Sqrt(-7))/2 = -1-b7
|