Group action invariants
| Degree $n$ : | $14$ | |
| Transitive number $t$ : | $25$ | |
| CHM label : | $[7^{2}:6_{3}]2$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (2,4,6,8,10,12,14), (1,8)(2,9)(3,10)(4,11)(5,12)(6,13)(7,14), (1,13)(2,12)(3,11)(4,10)(5,9)(6,8), (1,11,9)(2,4,8)(3,5,13)(6,12,10) | |
| $|\Aut(F/K)|$: | $1$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 3 4: $C_2^2$ 6: $S_3$ 12: $D_{6}$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 7: None
Low degree siblings
21T23 x 2, 28T78, 42T110 x 2, 42T111 x 2, 42T112 x 2, 42T122Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 7, 1, 1, 1, 1, 1, 1, 1 $ | $12$ | $7$ | $( 2, 4, 6, 8,10,12,14)$ |
| $ 7, 7 $ | $6$ | $7$ | $( 1, 3, 5, 7, 9,11,13)( 2, 4, 6, 8,10,12,14)$ |
| $ 7, 7 $ | $6$ | $7$ | $( 1, 3, 5, 7, 9,11,13)( 2, 8,14, 6,12, 4,10)$ |
| $ 7, 7 $ | $6$ | $7$ | $( 1, 3, 5, 7, 9,11,13)( 2, 6,10,14, 4, 8,12)$ |
| $ 7, 7 $ | $6$ | $7$ | $( 1, 3, 5, 7, 9,11,13)( 2,14,12,10, 8, 6, 4)$ |
| $ 7, 7 $ | $6$ | $7$ | $( 1, 3, 5, 7, 9,11,13)( 2,10, 4,12, 6,14, 8)$ |
| $ 7, 7 $ | $6$ | $7$ | $( 1, 3, 5, 7, 9,11,13)( 2,12, 8, 4,14,10, 6)$ |
| $ 3, 3, 3, 3, 1, 1 $ | $98$ | $3$ | $( 3, 5, 9)( 4,10, 6)( 7,13,11)( 8,12,14)$ |
| $ 2, 2, 2, 2, 2, 2, 2 $ | $21$ | $2$ | $( 1, 8)( 2, 9)( 3,10)( 4,11)( 5,12)( 6,13)( 7,14)$ |
| $ 14 $ | $42$ | $14$ | $( 1,10, 3,12, 5,14, 7, 2, 9, 4,11, 6,13, 8)$ |
| $ 14 $ | $42$ | $14$ | $( 1,14, 7, 6,13,12, 5, 4,11,10, 3, 2, 9, 8)$ |
| $ 14 $ | $42$ | $14$ | $( 1,12, 5, 2, 9, 6,13,10, 3,14, 7, 4,11, 8)$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1 $ | $49$ | $2$ | $( 3,13)( 4,14)( 5,11)( 6,12)( 7, 9)( 8,10)$ |
| $ 6, 6, 1, 1 $ | $98$ | $6$ | $( 3,11, 9,13, 5, 7)( 4, 8, 6,14,10,12)$ |
| $ 14 $ | $42$ | $14$ | $( 1, 8, 3, 6, 5, 4, 7, 2, 9,14,11,12,13,10)$ |
| $ 2, 2, 2, 2, 2, 2, 2 $ | $21$ | $2$ | $( 1,10)( 2, 9)( 3, 8)( 4, 7)( 5, 6)(11,14)(12,13)$ |
| $ 14 $ | $42$ | $14$ | $( 1,14,11, 4, 7, 8, 3,12,13, 2, 9, 6, 5,10)$ |
| $ 14 $ | $42$ | $14$ | $( 1, 2, 9, 8, 3,14,11, 6, 5,12,13, 4, 7,10)$ |
Group invariants
| Order: | $588=2^{2} \cdot 3 \cdot 7^{2}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [588, 35] |
| Character table: |
2 2 . 1 1 1 1 1 1 1 2 1 1 1 2 1 1 2 1 1
3 1 . . . . . . . 1 . . . . 1 1 . . . .
7 2 2 2 2 2 2 2 2 . 1 1 1 1 . . 1 1 1 1
1a 7a 7b 7c 7d 7e 7f 7g 3a 2a 14a 14b 14c 2b 6a 14d 2c 14e 14f
2P 1a 7a 7f 7g 7b 7c 7d 7e 3a 1a 7b 7d 7f 1a 3a 7e 1a 7c 7g
3P 1a 7a 7d 7e 7f 7g 7b 7c 1a 2a 14b 14c 14a 2b 2b 14f 2c 14d 14e
5P 1a 7a 7f 7g 7b 7c 7d 7e 3a 2a 14c 14a 14b 2b 6a 14e 2c 14f 14d
7P 1a 1a 1a 1a 1a 1a 1a 1a 3a 2a 2a 2a 2a 2b 6a 2c 2c 2c 2c
11P 1a 7a 7d 7e 7f 7g 7b 7c 3a 2a 14b 14c 14a 2b 6a 14f 2c 14d 14e
13P 1a 7a 7b 7c 7d 7e 7f 7g 3a 2a 14a 14b 14c 2b 6a 14d 2c 14e 14f
X.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 1 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 1 1 1 1
X.3 1 1 1 1 1 1 1 1 1 -1 -1 -1 -1 1 1 -1 -1 -1 -1
X.4 1 1 1 1 1 1 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1
X.5 2 2 2 2 2 2 2 2 -1 . . . . -2 1 . . . .
X.6 2 2 2 2 2 2 2 2 -1 . . . . 2 -1 . . . .
X.7 6 -1 A E B D C F . . . . . . . G -2 H I
X.8 6 -1 B D C F A E . . . . . . . I -2 G H
X.9 6 -1 C F A E B D . . . . . . . H -2 I G
X.10 6 -1 A E B D C F . . . . . . . -G 2 -H -I
X.11 6 -1 B D C F A E . . . . . . . -I 2 -G -H
X.12 6 -1 C F A E B D . . . . . . . -H 2 -I -G
X.13 6 -1 D C F A E B . -2 G I H . . . . . .
X.14 6 -1 E B D C F A . -2 H G I . . . . . .
X.15 6 -1 F A E B D C . -2 I H G . . . . . .
X.16 6 -1 D C F A E B . 2 -G -I -H . . . . . .
X.17 6 -1 E B D C F A . 2 -H -G -I . . . . . .
X.18 6 -1 F A E B D C . 2 -I -H -G . . . . . .
X.19 12 5 -2 -2 -2 -2 -2 -2 . . . . . . . . . . .
A = -2*E(7)-2*E(7)^2-2*E(7)^5-2*E(7)^6
B = -2*E(7)-2*E(7)^3-2*E(7)^4-2*E(7)^6
C = -2*E(7)^2-2*E(7)^3-2*E(7)^4-2*E(7)^5
D = 2*E(7)^2+E(7)^3+E(7)^4+2*E(7)^5
E = E(7)+2*E(7)^3+2*E(7)^4+E(7)^6
F = 2*E(7)+E(7)^2+E(7)^5+2*E(7)^6
G = -E(7)^2-E(7)^5
H = -E(7)^3-E(7)^4
I = -E(7)-E(7)^6
|