Show commands: Magma
Group invariants
Abstract group: | $C_{14}$ |
| |
Order: | $14=2 \cdot 7$ |
| |
Cyclic: | yes |
| |
Abelian: | yes |
| |
Solvable: | yes |
| |
Nilpotency class: | $1$ |
|
Group action invariants
Degree $n$: | $14$ |
| |
Transitive number $t$: | $1$ |
| |
CHM label: | $C(14)=7[x]2$ | ||
Parity: | $-1$ |
| |
Primitive: | no |
| |
$\card{\Aut(F/K)}$: | $14$ |
| |
Generators: | $(1,2,3,4,5,6,7,8,9,10,11,12,13,14)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ $7$: $C_7$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 7: $C_7$
Low degree siblings
There are no siblings with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{14}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{7}$ | $1$ | $2$ | $7$ | $( 1, 8)( 2, 9)( 3,10)( 4,11)( 5,12)( 6,13)( 7,14)$ |
7A1 | $7^{2}$ | $1$ | $7$ | $12$ | $( 1, 3, 5, 7, 9,11,13)( 2, 4, 6, 8,10,12,14)$ |
7A-1 | $7^{2}$ | $1$ | $7$ | $12$ | $( 1,13,11, 9, 7, 5, 3)( 2,14,12,10, 8, 6, 4)$ |
7A2 | $7^{2}$ | $1$ | $7$ | $12$ | $( 1, 5, 9,13, 3, 7,11)( 2, 6,10,14, 4, 8,12)$ |
7A-2 | $7^{2}$ | $1$ | $7$ | $12$ | $( 1,11, 7, 3,13, 9, 5)( 2,12, 8, 4,14,10, 6)$ |
7A3 | $7^{2}$ | $1$ | $7$ | $12$ | $( 1, 7,13, 5,11, 3, 9)( 2, 8,14, 6,12, 4,10)$ |
7A-3 | $7^{2}$ | $1$ | $7$ | $12$ | $( 1, 9, 3,11, 5,13, 7)( 2,10, 4,12, 6,14, 8)$ |
14A1 | $14$ | $1$ | $14$ | $13$ | $( 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13,14)$ |
14A-1 | $14$ | $1$ | $14$ | $13$ | $( 1,14,13,12,11,10, 9, 8, 7, 6, 5, 4, 3, 2)$ |
14A3 | $14$ | $1$ | $14$ | $13$ | $( 1, 4, 7,10,13, 2, 5, 8,11,14, 3, 6, 9,12)$ |
14A-3 | $14$ | $1$ | $14$ | $13$ | $( 1,12, 9, 6, 3,14,11, 8, 5, 2,13,10, 7, 4)$ |
14A5 | $14$ | $1$ | $14$ | $13$ | $( 1, 6,11, 2, 7,12, 3, 8,13, 4, 9,14, 5,10)$ |
14A-5 | $14$ | $1$ | $14$ | $13$ | $( 1,10, 5,14, 9, 4,13, 8, 3,12, 7, 2,11, 6)$ |
Malle's constant $a(G)$: $1/7$
Character table
1A | 2A | 7A1 | 7A-1 | 7A2 | 7A-2 | 7A3 | 7A-3 | 14A1 | 14A-1 | 14A3 | 14A-3 | 14A5 | 14A-5 | ||
Size | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | |
2 P | 1A | 1A | 7A2 | 7A-2 | 7A-3 | 7A3 | 7A-1 | 7A1 | 7A1 | 7A-1 | 7A3 | 7A-3 | 7A-2 | 7A2 | |
7 P | 1A | 2A | 7A3 | 7A-3 | 7A-1 | 7A1 | 7A2 | 7A-2 | 14A3 | 14A-3 | 14A-5 | 14A5 | 14A1 | 14A-1 | |
Type | |||||||||||||||
14.2.1a | R | ||||||||||||||
14.2.1b | R | ||||||||||||||
14.2.1c1 | C | ||||||||||||||
14.2.1c2 | C | ||||||||||||||
14.2.1c3 | C | ||||||||||||||
14.2.1c4 | C | ||||||||||||||
14.2.1c5 | C | ||||||||||||||
14.2.1c6 | C | ||||||||||||||
14.2.1d1 | C | ||||||||||||||
14.2.1d2 | C | ||||||||||||||
14.2.1d3 | C | ||||||||||||||
14.2.1d4 | C | ||||||||||||||
14.2.1d5 | C | ||||||||||||||
14.2.1d6 | C |
Regular extensions
$f_{ 1 } =$ |
$x^{14} + \left(-42 t^{6} - 42 t^{5} - 42 t^{4} - 42 t^{3} - 42 t^{2} - 42 t - 42\right) x^{12} + \left(231 t^{12} + 462 t^{11} + 1477 t^{10} + 2100 t^{9} + 2723 t^{8} + 3738 t^{7} + 4361 t^{6} + 4130 t^{5} + 3899 t^{4} + 2884 t^{3} + 2261 t^{2} + 1638 t + 623\right) x^{10} + \left(-560 t^{18} - 1680 t^{17} - 5320 t^{16} - 10500 t^{15} - 28196 t^{14} - 48412 t^{13} - 73059 t^{12} - 109277 t^{11} - 142660 t^{10} - 165858 t^{9} - 185976 t^{8} - 184492 t^{7} - 168707 t^{6} - 144060 t^{5} - 107282 t^{4} - 72779 t^{3} - 45941 t^{2} - 20643 t - 4431\right) x^{8} + \left(735 t^{24} + 2940 t^{23} + 7350 t^{22} + 14700 t^{21} + 44933 t^{20} + 98784 t^{19} + 250390 t^{18} + 478338 t^{17} + 804433 t^{16} + 1332114 t^{15} + 1991948 t^{14} + 2690492 t^{13} + 3425541 t^{12} + 3998694 t^{11} + 4349730 t^{10} + 4466448 t^{9} + 4206993 t^{8} + 3640798 t^{7} + 2928534 t^{6} + 2139634 t^{5} + 1414875 t^{4} + 835156 t^{3} + 390138 t^{2} + 117502 t + 16513\right) x^{6} + \left(-546 t^{30} - 2730 t^{29} - 4270 t^{28} - 1470 t^{27} - 8428 t^{26} - 35868 t^{25} - 125048 t^{24} - 297892 t^{23} - 750785 t^{22} - 1464827 t^{21} - 2796528 t^{20} - 5606090 t^{19} - 9994089 t^{18} - 15860761 t^{17} - 23528421 t^{16} - 32329332 t^{15} - 41411902 t^{14} - 49685559 t^{13} - 55258231 t^{12} - 57427706 t^{11} - 56236124 t^{10} - 51256618 t^{9} - 43197525 t^{8} - 33693401 t^{7} - 24122749 t^{6} - 15733557 t^{5} - 9148643 t^{4} - 4384373 t^{3} - 1522829 t^{2} - 325934 t - 31906\right) x^{4} + \left(217 t^{36} + 1302 t^{35} + 637 t^{34} - 9408 t^{33} - 18522 t^{32} - 2156 t^{31} + 52724 t^{30} + 297472 t^{29} + 916405 t^{28} + 1232252 t^{27} + 382347 t^{26} - 1519490 t^{25} - 3259137 t^{24} - 2846508 t^{23} + 1371524 t^{22} + 11142390 t^{21} + 30388820 t^{20} + 62408654 t^{19} + 107381981 t^{18} + 163149420 t^{17} + 223881000 t^{16} + 281421294 t^{15} + 328575247 t^{14} + 358521632 t^{13} + 366484769 t^{12} + 351222396 t^{11} + 313783309 t^{10} + 260040354 t^{9} + 200267907 t^{8} + 143108560 t^{7} + 93629347 t^{6} + 54506326 t^{5} + 26706323 t^{4} + 10101252 t^{3} + 2645118 t^{2} + 414274 t + 28784\right) x^{2} + \left(-36 t^{42} - 252 t^{41} + 168 t^{40} + 4620 t^{39} + 7532 t^{38} - 16044 t^{37} - 54201 t^{36} - 43821 t^{35} + 4053 t^{34} - 37443 t^{33} - 329742 t^{32} - 512176 t^{31} + 372554 t^{30} + 2425535 t^{29} + 4374502 t^{28} + 5507922 t^{27} + 7679343 t^{26} + 13661928 t^{25} + 20026160 t^{24} + 14854336 t^{23} - 12506095 t^{22} - 63221390 t^{21} - 134266594 t^{20} - 229560359 t^{19} - 356950734 t^{18} - 507887702 t^{17} - 651927591 t^{16} - 759720724 t^{15} - 822126747 t^{14} - 842090809 t^{13} - 815973914 t^{12} - 735878941 t^{11} - 610620430 t^{10} - 468684125 t^{9} - 336922663 t^{8} - 225932540 t^{7} - 136113761 t^{6} - 69067236 t^{5} - 27466572 t^{4} - 7972825 t^{3} - 1558571 t^{2} - 181293 t - 9409\right)$
|