Group action invariants
| Degree $n$ : | $14$ | |
| Transitive number $t$ : | $1$ | |
| Group : | $C_{14}$ | |
| CHM label : | $C(14)=7[x]2$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $1$ | |
| Generators: | (1,2,3,4,5,6,7,8,9,10,11,12,13,14) | |
| $|\Aut(F/K)|$: | $14$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ 7: $C_7$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 7: $C_7$
Low degree siblings
There are no siblings with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 14 $ | $1$ | $14$ | $( 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13,14)$ |
| $ 7, 7 $ | $1$ | $7$ | $( 1, 3, 5, 7, 9,11,13)( 2, 4, 6, 8,10,12,14)$ |
| $ 14 $ | $1$ | $14$ | $( 1, 4, 7,10,13, 2, 5, 8,11,14, 3, 6, 9,12)$ |
| $ 7, 7 $ | $1$ | $7$ | $( 1, 5, 9,13, 3, 7,11)( 2, 6,10,14, 4, 8,12)$ |
| $ 14 $ | $1$ | $14$ | $( 1, 6,11, 2, 7,12, 3, 8,13, 4, 9,14, 5,10)$ |
| $ 7, 7 $ | $1$ | $7$ | $( 1, 7,13, 5,11, 3, 9)( 2, 8,14, 6,12, 4,10)$ |
| $ 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 8)( 2, 9)( 3,10)( 4,11)( 5,12)( 6,13)( 7,14)$ |
| $ 7, 7 $ | $1$ | $7$ | $( 1, 9, 3,11, 5,13, 7)( 2,10, 4,12, 6,14, 8)$ |
| $ 14 $ | $1$ | $14$ | $( 1,10, 5,14, 9, 4,13, 8, 3,12, 7, 2,11, 6)$ |
| $ 7, 7 $ | $1$ | $7$ | $( 1,11, 7, 3,13, 9, 5)( 2,12, 8, 4,14,10, 6)$ |
| $ 14 $ | $1$ | $14$ | $( 1,12, 9, 6, 3,14,11, 8, 5, 2,13,10, 7, 4)$ |
| $ 7, 7 $ | $1$ | $7$ | $( 1,13,11, 9, 7, 5, 3)( 2,14,12,10, 8, 6, 4)$ |
| $ 14 $ | $1$ | $14$ | $( 1,14,13,12,11,10, 9, 8, 7, 6, 5, 4, 3, 2)$ |
Group invariants
| Order: | $14=2 \cdot 7$ | |
| Cyclic: | Yes | |
| Abelian: | Yes | |
| Solvable: | Yes | |
| GAP id: | [14, 2] |
| Character table: |
2 1 1 1 1 1 1 1 1 1 1 1 1 1 1
7 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1a 14a 7a 14b 7b 14c 7c 2a 7d 14d 7e 14e 7f 14f
X.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1
X.3 1 A B C /C /B /A 1 A B C /C /B /A
X.4 1 -A B -C /C -/B /A -1 A -B C -/C /B -/A
X.5 1 B /C /A A C /B 1 B /C /A A C /B
X.6 1 -B /C -/A A -C /B -1 B -/C /A -A C -/B
X.7 1 C /A B /B A /C 1 C /A B /B A /C
X.8 1 -C /A -B /B -A /C -1 C -/A B -/B A -/C
X.9 1 /C A /B B /A C 1 /C A /B B /A C
X.10 1 -/C A -/B B -/A C -1 /C -A /B -B /A -C
X.11 1 /B C A /A /C B 1 /B C A /A /C B
X.12 1 -/B C -A /A -/C B -1 /B -C A -/A /C -B
X.13 1 /A /B /C C B A 1 /A /B /C C B A
X.14 1 -/A /B -/C C -B A -1 /A -/B /C -C B -A
A = E(7)^4
B = E(7)
C = E(7)^5
|