Group action invariants
| Degree $n$ : | $14$ | |
| Transitive number $t$ : | $17$ | |
| Group : | $C_2\times \PSL(2,7)$ | |
| CHM label : | $2L_{7}(14)=[2]L(7)$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,8)(2,13)(3,10)(4,12)(5,11)(6,9), (1,9,11)(2,4,8)(3,13,5)(6,12,10), (1,8)(2,9)(3,10)(4,11)(5,12)(6,13)(7,14), (1,3,5,7,9,11,13)(2,4,6,8,10,12,14) | |
| $|\Aut(F/K)|$: | $2$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ 168: $\GL(3,2)$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 7: $\GL(3,2)$
Low degree siblings
14T17, 14T19 x 2, 16T714, 28T43 x 2, 42T78, 42T79, 42T80 x 2Siblings are shown with degree $\leq 47$
A number field with this Galois group has exactly one arithmetically equivalent field.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 2, 1, 1, 1, 1 $ | $21$ | $2$ | $( 3, 6)( 4,11)( 5, 7)(10,13)(12,14)$ |
| $ 3, 3, 3, 3, 1, 1 $ | $56$ | $3$ | $( 2, 3, 6)( 4, 7,12)( 5,11,14)( 9,10,13)$ |
| $ 4, 4, 4, 1, 1 $ | $42$ | $4$ | $( 2, 4, 9,11)( 3, 5,14,13)( 6,10,12, 7)$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1 $ | $21$ | $2$ | $( 2, 4)( 3,10)( 5, 6)( 7,14)( 9,11)(12,13)$ |
| $ 14 $ | $24$ | $14$ | $( 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13,14)$ |
| $ 7, 7 $ | $24$ | $7$ | $( 1, 2, 3, 7, 6, 4,12)( 5, 8, 9,10,14,13,11)$ |
| $ 6, 6, 2 $ | $56$ | $6$ | $( 1, 2, 4, 8, 9,11)( 3, 7,13,10,14, 6)( 5,12)$ |
| $ 4, 4, 4, 2 $ | $42$ | $4$ | $( 1, 2, 8, 9)( 3,12,13, 7)( 4,11)( 5, 6,14,10)$ |
| $ 14 $ | $24$ | $14$ | $( 1, 2,12, 6,14,11, 3, 8, 9, 5,13, 7, 4,10)$ |
| $ 7, 7 $ | $24$ | $7$ | $( 1, 2,12,11,10, 7,13)( 3,14, 6, 8, 9, 5, 4)$ |
| $ 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 8)( 2, 9)( 3,10)( 4,11)( 5,12)( 6,13)( 7,14)$ |
Group invariants
| Order: | $336=2^{4} \cdot 3 \cdot 7$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | No | |
| GAP id: | [336, 209] |
| Character table: |
2 4 4 1 3 4 1 1 1 3 1 1 4
3 1 . 1 . . . . 1 . . . 1
7 1 . . . . 1 1 . . 1 1 1
1a 2a 3a 4a 2b 14a 7a 6a 4b 14b 7b 2c
2P 1a 1a 3a 2b 1a 7b 7a 3a 2b 7a 7b 1a
3P 1a 2a 1a 4a 2b 14b 7b 2c 4b 14a 7a 2c
5P 1a 2a 3a 4a 2b 14b 7b 6a 4b 14a 7a 2c
7P 1a 2a 3a 4a 2b 2c 1a 6a 4b 2c 1a 2c
11P 1a 2a 3a 4a 2b 14a 7a 6a 4b 14b 7b 2c
13P 1a 2a 3a 4a 2b 14b 7b 6a 4b 14a 7a 2c
X.1 1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1
X.3 3 -1 . 1 -1 A /A . 1 /A A 3
X.4 3 -1 . 1 -1 /A A . 1 A /A 3
X.5 3 1 . -1 -1 -/A A . 1 -A /A -3
X.6 3 1 . -1 -1 -A /A . 1 -/A A -3
X.7 6 2 . . 2 -1 -1 . . -1 -1 6
X.8 6 -2 . . 2 1 -1 . . 1 -1 -6
X.9 7 -1 1 -1 -1 . . 1 -1 . . 7
X.10 7 1 1 1 -1 . . -1 -1 . . -7
X.11 8 . -1 . . 1 1 -1 . 1 1 8
X.12 8 . -1 . . -1 1 1 . -1 1 -8
A = E(7)^3+E(7)^5+E(7)^6
= (-1-Sqrt(-7))/2 = -1-b7
|