Properties

Label 14T43
Order \(2688\)
n \(14\)
Cyclic No
Abelian No
Solvable No
Primitive No
$p$-group No

Related objects

Learn more about

Group action invariants

Degree $n$ :  $14$
Transitive number $t$ :  $43$
CHM label :  $2^{4}:L_{7}(14)=[2^{4}]L(7)$
Parity:  $-1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (1,9,11)(2,4,8)(3,13,5)(6,12,10), (1,8)(2,9)(4,11), (2,4)(5,13)(6,12)(9,11), (1,3,5,7,9,11,13)(2,4,6,8,10,12,14)
$|\Aut(F/K)|$:  $2$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$
168:  $\GL(3,2)$
336:  14T17
1344:  $C_2^3:\GL(3,2)$

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: None

Degree 7: $\GL(3,2)$

Low degree siblings

14T43, 16T1504 x 2, 28T232 x 2, 28T233, 28T234 x 2, 42T328 x 2, 42T329 x 2

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

Cycle TypeSizeOrderRepresentative
$ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ $1$ $1$ $()$
$ 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ $7$ $2$ $( 4,11)( 5,12)( 7,14)$
$ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1 $ $7$ $2$ $( 2, 9)( 4,11)( 5,12)( 6,13)$
$ 2, 2, 2, 2, 2, 2, 2 $ $1$ $2$ $( 1, 8)( 2, 9)( 3,10)( 4,11)( 5,12)( 6,13)( 7,14)$
$ 2, 2, 2, 2, 2, 2, 1, 1 $ $42$ $2$ $( 1, 8)( 3,12)( 4,11)( 5,10)( 6,14)( 7,13)$
$ 4, 4, 2, 1, 1, 1, 1 $ $84$ $4$ $( 1, 8)( 3, 5,10,12)( 6, 7,13,14)$
$ 2, 2, 2, 2, 2, 2, 2 $ $42$ $2$ $( 1, 8)( 2, 9)( 3,12)( 4,11)( 5,10)( 6, 7)(13,14)$
$ 4, 4, 2, 2, 1, 1 $ $84$ $4$ $( 1, 8)( 2, 9)( 3, 5,10,12)( 6,14,13, 7)$
$ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1 $ $42$ $2$ $( 3, 5)( 6,14)( 7,13)(10,12)$
$ 2, 2, 2, 2, 2, 1, 1, 1, 1 $ $42$ $2$ $( 2, 9)( 3, 5)( 6, 7)(10,12)(13,14)$
$ 4, 4, 4, 2 $ $168$ $4$ $( 1, 8)( 2, 3,11, 7)( 4,14, 9,10)( 5, 6,12,13)$
$ 4, 4, 2, 2, 2 $ $168$ $4$ $( 1, 8)( 2, 3, 4, 7)( 5, 6)( 9,10,11,14)(12,13)$
$ 4, 4, 4, 1, 1 $ $168$ $4$ $( 2,10, 4, 7)( 3,11,14, 9)( 5, 6,12,13)$
$ 4, 4, 2, 2, 1, 1 $ $168$ $4$ $( 2,10,11, 7)( 3, 4,14, 9)( 5, 6)(12,13)$
$ 3, 3, 3, 3, 1, 1 $ $224$ $3$ $( 2, 3,12)( 4, 7, 6)( 5, 9,10)(11,14,13)$
$ 6, 3, 3, 1, 1 $ $224$ $6$ $( 2, 3, 5, 9,10,12)( 4,14,13)( 6,11, 7)$
$ 6, 6, 2 $ $224$ $6$ $( 1, 8)( 2,10, 5, 9, 3,12)( 4,14,13,11, 7, 6)$
$ 6, 3, 3, 2 $ $224$ $6$ $( 1, 8)( 2,10,12)( 3, 5, 9)( 4, 7, 6,11,14,13)$
$ 7, 7 $ $192$ $7$ $( 1, 2, 3, 4,12, 6, 7)( 5,13,14, 8, 9,10,11)$
$ 14 $ $192$ $14$ $( 1, 2, 3,11,12, 6,14, 8, 9,10, 4, 5,13, 7)$
$ 7, 7 $ $192$ $7$ $( 1, 9,10, 7, 6, 4, 5)( 2, 3,14,13,11,12, 8)$
$ 14 $ $192$ $14$ $( 1, 9,10,14,13, 4,12, 8, 2, 3, 7, 6,11, 5)$

Group invariants

Order:  $2688=2^{7} \cdot 3 \cdot 7$
Cyclic:  No
Abelian:  No
Solvable:  No
GAP id:  Data not available
Character table: Data not available.