Group action invariants
| Degree $n$ : | $14$ | |
| Transitive number $t$ : | $34$ | |
| CHM label : | $2^{3}:L_{7}(14)=[2^{3}]L(7)=[2^{3}]L(3,2)$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,9,11)(2,4,8)(3,13,5)(6,12,10), (2,4)(5,13)(6,12)(9,11), (3,10)(5,12)(6,13)(7,14), (1,3,5,7,9,11,13)(2,4,6,8,10,12,14) | |
| $|\Aut(F/K)|$: | $2$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 168: $\GL(3,2)$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 7: $\GL(3,2)$
Low degree siblings
8T48 x 2, 14T34, 28T153, 28T159 x 2, 42T210 x 2, 42T211 x 2Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1 $ | $7$ | $2$ | $( 3,10)( 5,12)( 6,13)( 7,14)$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1 $ | $42$ | $2$ | $( 1, 8)( 3,12)( 4,11)( 5,10)( 6,14)( 7,13)$ |
| $ 4, 4, 2, 2, 1, 1 $ | $84$ | $4$ | $( 2, 9)( 3, 5,10,12)( 4,11)( 6, 7,13,14)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1 $ | $42$ | $2$ | $( 3,12)( 5,10)( 6, 7)(13,14)$ |
| $ 4, 4, 4, 2 $ | $168$ | $4$ | $( 1, 8)( 2, 3,11, 7)( 4,14, 9,10)( 5, 6,12,13)$ |
| $ 4, 4, 2, 2, 1, 1 $ | $168$ | $4$ | $( 2, 3,11,14)( 4, 7, 9,10)( 5, 6)(12,13)$ |
| $ 3, 3, 3, 3, 1, 1 $ | $224$ | $3$ | $( 2, 3,12)( 4, 7, 6)( 5, 9,10)(11,14,13)$ |
| $ 6, 3, 3, 2 $ | $224$ | $6$ | $( 1, 8)( 2, 3, 5)( 4,14,13,11, 7, 6)( 9,10,12)$ |
| $ 7, 7 $ | $192$ | $7$ | $( 1, 2, 3, 4,12, 6, 7)( 5,13,14, 8, 9,10,11)$ |
| $ 7, 7 $ | $192$ | $7$ | $( 1, 9,10, 7, 6, 4, 5)( 2, 3,14,13,11,12, 8)$ |
Group invariants
| Order: | $1344=2^{6} \cdot 3 \cdot 7$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | No | |
| GAP id: | [1344, 11686] |
| Character table: |
2 6 6 5 4 5 3 3 1 1 . .
3 1 1 . . . . . 1 1 . .
7 1 . . . . . . . . 1 1
1a 2a 2b 4a 2c 4b 4c 3a 6a 7a 7b
2P 1a 1a 1a 2a 1a 2b 2c 3a 3a 7a 7b
3P 1a 2a 2b 4a 2c 4b 4c 1a 2a 7b 7a
5P 1a 2a 2b 4a 2c 4b 4c 3a 6a 7b 7a
7P 1a 2a 2b 4a 2c 4b 4c 3a 6a 1a 1a
X.1 1 1 1 1 1 1 1 1 1 1 1
X.2 3 3 -1 -1 -1 1 1 . . A /A
X.3 3 3 -1 -1 -1 1 1 . . /A A
X.4 6 6 2 2 2 . . . . -1 -1
X.5 7 -1 3 -1 -1 1 -1 1 -1 . .
X.6 7 7 -1 -1 -1 -1 -1 1 1 . .
X.7 7 -1 -1 -1 3 -1 1 1 -1 . .
X.8 8 8 . . . . . -1 -1 1 1
X.9 14 -2 2 -2 2 . . -1 1 . .
X.10 21 -3 1 1 -3 -1 1 . . . .
X.11 21 -3 -3 1 1 1 -1 . . . .
A = E(7)^3+E(7)^5+E(7)^6
= (-1-Sqrt(-7))/2 = -1-b7
|