Group action invariants
| Degree $n$ : | $14$ | |
| Transitive number $t$ : | $11$ | |
| Group : | $F_8:C_3$ | |
| CHM label : | $[2^{3}]F_{21}(7)$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,9,11)(2,4,8)(3,13,5)(6,12,10), (3,10)(5,12)(6,13)(7,14), (1,3,5,7,9,11,13)(2,4,6,8,10,12,14) | |
| $|\Aut(F/K)|$: | $2$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 3: $C_3$ 21: $C_7:C_3$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 7: $C_7:C_3$
Low degree siblings
8T36, 24T283, 28T27, 42T26Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1 $ | $7$ | $2$ | $( 3,10)( 5,12)( 6,13)( 7,14)$ |
| $ 3, 3, 3, 3, 1, 1 $ | $28$ | $3$ | $( 2, 3, 5)( 4, 7,13)( 6,11,14)( 9,10,12)$ |
| $ 3, 3, 3, 3, 1, 1 $ | $28$ | $3$ | $( 2, 5, 3)( 4,13, 7)( 6,14,11)( 9,12,10)$ |
| $ 7, 7 $ | $24$ | $7$ | $( 1, 2, 3, 4,12, 6, 7)( 5,13,14, 8, 9,10,11)$ |
| $ 6, 3, 3, 2 $ | $28$ | $6$ | $( 1, 2, 4)( 3,13,12,10, 6, 5)( 7,14)( 8, 9,11)$ |
| $ 6, 3, 3, 2 $ | $28$ | $6$ | $( 1, 2, 6, 8, 9,13)( 3,10)( 4, 7, 5)(11,14,12)$ |
| $ 7, 7 $ | $24$ | $7$ | $( 1, 4,14,10,13, 2, 5)( 3, 6, 9,12, 8,11, 7)$ |
Group invariants
| Order: | $168=2^{3} \cdot 3 \cdot 7$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [168, 43] |
| Character table: |
2 3 3 1 1 . 1 1 .
3 1 1 1 1 . 1 1 .
7 1 . . . 1 . . 1
1a 2a 3a 3b 7a 6a 6b 7b
2P 1a 1a 3b 3a 7a 3b 3a 7b
3P 1a 2a 1a 1a 7b 2a 2a 7a
5P 1a 2a 3b 3a 7b 6b 6a 7a
7P 1a 2a 3a 3b 1a 6a 6b 1a
X.1 1 1 1 1 1 1 1 1
X.2 1 1 A /A 1 A /A 1
X.3 1 1 /A A 1 /A A 1
X.4 3 3 . . B . . /B
X.5 3 3 . . /B . . B
X.6 7 -1 1 1 . -1 -1 .
X.7 7 -1 A /A . -A -/A .
X.8 7 -1 /A A . -/A -A .
A = E(3)^2
= (-1-Sqrt(-3))/2 = -1-b3
B = E(7)^3+E(7)^5+E(7)^6
= (-1-Sqrt(-7))/2 = -1-b7
|