Learn more

Refine search


Results (1-50 of 3014 matches)

Next   displayed columns for results
Label Polynomial Discriminant Galois group Class group Regulator
16.0.184...616.1 $x^{16} + 1$ $2^{64}$ $C_8\times C_2$ (as 16T5) trivial $15753.9498624$
16.0.110...169.1 $x^{16} - x^{15} + 8 x^{14} - 5 x^{13} + 40 x^{12} - 22 x^{11} + 111 x^{10} - 36 x^{9} + 206 x^{8} - 59 x^{7} + 212 x^{6} - 14 x^{5} + 125 x^{4} - 20 x^{3} + 26 x^{2} + 4 x + 1$ $3^{8}\cdot 17^{14}$ $C_8\times C_2$ (as 16T5) $[5]$ $3640.01221338$
16.0.110...944.1 $x^{16} + 15 x^{14} + 91 x^{12} + 286 x^{10} + 495 x^{8} + 462 x^{6} + 210 x^{4} + 36 x^{2} + 1$ $2^{16}\cdot 17^{14}$ $C_8\times C_2$ (as 16T5) $[8]$ $3640.01221338$
16.0.302...144.1 $x^{16} + 8 x^{14} + 44 x^{12} + 128 x^{10} + 270 x^{8} + 288 x^{6} + 216 x^{4} + 32 x^{2} + 4$ $2^{62}\cdot 3^{8}$ $C_8\times C_2$ (as 16T5) $[3, 3]$ $15753.9498624$
16.0.302...144.2 $x^{16} - 8 x^{14} + 44 x^{12} - 128 x^{10} + 270 x^{8} - 288 x^{6} + 216 x^{4} - 32 x^{2} + 4$ $2^{62}\cdot 3^{8}$ $C_8\times C_2$ (as 16T5) trivial $95624.3098505$
16.16.657...625.1 $x^{16} - x^{15} - 22 x^{14} + 17 x^{13} + 172 x^{12} - 92 x^{11} - 601 x^{10} + 196 x^{9} + 1014 x^{8} - 189 x^{7} - 844 x^{6} + 74 x^{5} + 325 x^{4} - 46 x^{2} - 4 x + 1$ $5^{8}\cdot 17^{14}$ $C_8\times C_2$ (as 16T5) trivial $1299965.95967$
16.0.121...576.1 $x^{16} + 16 x^{14} + 104 x^{12} + 352 x^{10} + 660 x^{8} + 672 x^{6} + 336 x^{4} + 64 x^{2} + 1$ $2^{64}\cdot 3^{8}$ $C_8\times C_2$ (as 16T5) $[3, 6]$ $5982.15532136$
16.16.121...576.1 $x^{16} - 16 x^{14} + 104 x^{12} - 352 x^{10} + 660 x^{8} - 672 x^{6} + 336 x^{4} - 64 x^{2} + 1$ $2^{64}\cdot 3^{8}$ $C_8\times C_2$ (as 16T5) trivial $2882883.79836$
16.0.121...576.2 $x^{16} + 6561$ $2^{64}\cdot 3^{8}$ $C_8\times C_2$ (as 16T5) $[3, 6]$ $95624.3098505$
16.0.970...129.1 $x^{16} - x^{15} + 23 x^{14} - 16 x^{13} + 247 x^{12} - 128 x^{11} + 1478 x^{10} - 512 x^{9} + 5217 x^{8} - 1206 x^{7} + 10340 x^{6} - 1072 x^{5} + 10480 x^{4} - 960 x^{3} + 3968 x^{2} + 512 x + 256$ $7^{8}\cdot 17^{14}$ $C_8\times C_2$ (as 16T5) $[3, 15]$ $3640.01221338$
16.0.180...000.1 $x^{16} + 24 x^{14} + 204 x^{12} + 768 x^{10} + 1390 x^{8} + 1248 x^{6} + 536 x^{4} + 96 x^{2} + 4$ $2^{62}\cdot 5^{8}$ $C_8\times C_2$ (as 16T5) $[17]$ $12198.9512748$
16.16.180...000.1 $x^{16} - 24 x^{14} + 204 x^{12} - 768 x^{10} + 1390 x^{8} - 1248 x^{6} + 536 x^{4} - 96 x^{2} + 4$ $2^{62}\cdot 5^{8}$ $C_8\times C_2$ (as 16T5) trivial $9865525.20147$
16.0.282...664.1 $x^{16} + 30 x^{14} + 364 x^{12} + 2288 x^{10} + 7920 x^{8} + 14784 x^{6} + 13440 x^{4} + 4608 x^{2} + 256$ $2^{24}\cdot 17^{14}$ $C_8\times C_2$ (as 16T5) $[3, 24]$ $3640.01221338$
16.16.282...664.1 $x^{16} - 30 x^{14} + 364 x^{12} - 2288 x^{10} + 7920 x^{8} - 14784 x^{6} + 13440 x^{4} - 4608 x^{2} + 256$ $2^{24}\cdot 17^{14}$ $C_8\times C_2$ (as 16T5) trivial $9272036.51336$
16.0.720...000.1 $x^{16} + 16 x^{14} + 104 x^{12} + 352 x^{10} + 660 x^{8} + 672 x^{6} + 336 x^{4} + 64 x^{2} + 2209$ $2^{64}\cdot 5^{8}$ $C_8\times C_2$ (as 16T5) $[34]$ $15753.9498624$
16.0.720...000.2 $x^{16} + 390625$ $2^{64}\cdot 5^{8}$ $C_8\times C_2$ (as 16T5) $[34]$ $320942.011738$
16.0.720...000.3 $x^{16} - 16 x^{14} + 104 x^{12} - 352 x^{10} + 660 x^{8} - 672 x^{6} + 336 x^{4} - 64 x^{2} + 2209$ $2^{64}\cdot 5^{8}$ $C_8\times C_2$ (as 16T5) $[2]$ $320942.011738$
16.0.265...104.1 $x^{16} + 24 x^{14} + 276 x^{12} + 1776 x^{10} + 6850 x^{8} + 14784 x^{6} + 17024 x^{4} + 6144 x^{2} + 1024$ $2^{62}\cdot 7^{8}$ $C_8\times C_2$ (as 16T5) $[136]$ $15753.9498624$
16.0.265...104.2 $x^{16} - 8 x^{15} + 60 x^{14} - 280 x^{13} + 1126 x^{12} - 3480 x^{11} + 9068 x^{10} - 19160 x^{9} + 33497 x^{8} - 47584 x^{7} + 54432 x^{6} - 49136 x^{5} + 34192 x^{4} - 17680 x^{3} + 6408 x^{2} - 1456 x + 158$ $2^{62}\cdot 7^{8}$ $C_8\times C_2$ (as 16T5) $[4]$ $620029.352334$
16.0.360...449.1 $x^{16} - 6 x^{15} + 24 x^{14} - 68 x^{13} + 229 x^{12} - 610 x^{11} + 1652 x^{10} - 3427 x^{9} + 8268 x^{8} - 14574 x^{7} + 31149 x^{6} - 43150 x^{5} + 84686 x^{4} - 84235 x^{3} + 155680 x^{2} - 83057 x + 153851$ $11^{8}\cdot 17^{14}$ $C_8\times C_2$ (as 16T5) $[17, 17]$ $3640.01221338$
16.0.411...625.1 $x^{16} - x^{15} + 12 x^{14} - 17 x^{13} + 2 x^{12} - 75 x^{11} - 142 x^{10} - 399 x^{9} + 470 x^{8} - 121 x^{7} + 3168 x^{6} + 5225 x^{5} + 8927 x^{4} + 11662 x^{3} + 12432 x^{2} + 7816 x + 4336$ $5^{12}\cdot 17^{14}$ $C_8\times C_2$ (as 16T5) $[146]$ $55081.0821685$
16.0.723...584.1 $x^{16} - 11 x^{14} + 20 x^{12} + 115 x^{10} - 297 x^{8} - 729 x^{6} + 5496 x^{4} + 4993 x^{2} + 2209$ $2^{16}\cdot 3^{8}\cdot 17^{14}$ $C_8\times C_2$ (as 16T5) $[2, 2]$ $330165.460254$
16.16.723...584.1 $x^{16} - 2 x^{15} - 37 x^{14} + 68 x^{13} + 508 x^{12} - 836 x^{11} - 3189 x^{10} + 4518 x^{9} + 9089 x^{8} - 10408 x^{7} - 10057 x^{6} + 8378 x^{5} + 2786 x^{4} - 1462 x^{3} - 37 x^{2} + 32 x + 1$ $2^{16}\cdot 3^{8}\cdot 17^{14}$ $C_8\times C_2$ (as 16T5) trivial $33588984.3311$
16.0.723...584.2 $x^{16} - 17 x^{14} + 221 x^{12} - 986 x^{10} + 3162 x^{8} - 5202 x^{6} + 6069 x^{4} - 1445 x^{2} + 289$ $2^{16}\cdot 3^{8}\cdot 17^{14}$ $C_8\times C_2$ (as 16T5) $[2, 10]$ $351247.794557$
16.0.723...584.3 $x^{16} - 19 x^{14} + 108 x^{12} - 173 x^{10} + 155 x^{8} + 955 x^{6} + 720 x^{4} - 9739 x^{2} + 10609$ $2^{16}\cdot 3^{8}\cdot 17^{14}$ $C_8\times C_2$ (as 16T5) $[2, 8]$ $175623.897279$
16.0.106...416.1 $x^{16} + 32 x^{14} + 416 x^{12} + 2816 x^{10} + 10560 x^{8} + 21504 x^{6} + 21504 x^{4} + 8192 x^{2} + 961$ $2^{64}\cdot 7^{8}$ $C_8\times C_2$ (as 16T5) $[2, 34]$ $39114.0652766$
16.16.106...416.1 $x^{16} - 32 x^{14} + 416 x^{12} - 2816 x^{10} + 10560 x^{8} - 21504 x^{6} + 21504 x^{4} - 8192 x^{2} + 961$ $2^{64}\cdot 7^{8}$ $C_8\times C_2$ (as 16T5) trivial $122221144.043$
16.0.106...416.2 $x^{16} + 5764801$ $2^{64}\cdot 7^{8}$ $C_8\times C_2$ (as 16T5) $[2, 34]$ $620029.352334$
16.16.137...809.1 $x^{16} - 6 x^{15} - 24 x^{14} + 184 x^{13} + 145 x^{12} - 2062 x^{11} + 500 x^{10} + 10181 x^{9} - 7614 x^{8} - 20610 x^{7} + 22809 x^{6} + 10286 x^{5} - 19654 x^{4} + 4745 x^{3} + 2122 x^{2} - 1001 x + 101$ $13^{8}\cdot 17^{14}$ $C_8\times C_2$ (as 16T5) trivial $71925461.2875$
16.0.248...321.1 $x^{16} - x^{15} - 2 x^{14} + 19 x^{13} - 46 x^{12} + 108 x^{11} + 348 x^{10} - 795 x^{9} + 1681 x^{8} + 6119 x^{7} - 1809 x^{6} - 6620 x^{5} + 12333 x^{4} + 18226 x^{3} + 16573 x^{2} + 9440 x + 3481$ $3^{8}\cdot 41^{14}$ $C_8\times C_2$ (as 16T5) $[17]$ $541284.897174$
16.0.431...625.1 $x^{16} - 6 x^{15} + 32 x^{14} - 110 x^{13} + 439 x^{12} - 1250 x^{11} + 4000 x^{10} - 9195 x^{9} + 25370 x^{8} - 47784 x^{7} + 115811 x^{6} - 170636 x^{5} + 371982 x^{4} - 388515 x^{3} + 779262 x^{2} - 435519 x + 838099$ $3^{8}\cdot 5^{8}\cdot 17^{14}$ $C_8\times C_2$ (as 16T5) $[816]$ $3640.012213375973$
16.0.431...625.2 $x^{16} - 6 x^{15} + 26 x^{14} - 70 x^{13} + 153 x^{12} - 128 x^{11} - 428 x^{10} + 3149 x^{9} - 4488 x^{8} + 1516 x^{7} + 12743 x^{6} - 24194 x^{5} + 64192 x^{4} - 48869 x^{3} + 100862 x^{2} - 32207 x + 16999$ $3^{8}\cdot 5^{8}\cdot 17^{14}$ $C_8\times C_2$ (as 16T5) $[2, 34]$ $55081.08216847024$
16.0.431...625.3 $x^{16} - x^{15} + 25 x^{14} - 22 x^{13} + 448 x^{12} - 447 x^{11} + 3528 x^{10} - 5340 x^{9} + 21507 x^{8} - 30030 x^{7} + 69368 x^{6} - 91287 x^{5} + 155828 x^{4} - 158392 x^{3} + 147875 x^{2} - 72501 x + 28561$ $3^{8}\cdot 5^{8}\cdot 17^{14}$ $C_8\times C_2$ (as 16T5) $[2, 170]$ $81485.0410293661$
16.0.431...625.4 $x^{16} - x^{15} + 19 x^{14} - 4 x^{13} + 187 x^{12} + 24 x^{11} + 1146 x^{10} + 1455 x^{9} + 4962 x^{8} + 6399 x^{7} + 25490 x^{6} - 5124 x^{5} + 27353 x^{4} - 11794 x^{3} + 25043 x^{2} - 63579 x + 41719$ $3^{8}\cdot 5^{8}\cdot 17^{14}$ $C_8\times C_2$ (as 16T5) $[48]$ $81485.0410293661$
16.0.723...984.1 $x^{16} + 153 x^{12} + 1768 x^{8} + 4913 x^{4} + 289$ $2^{32}\cdot 17^{14}$ $C_8\times C_2$ (as 16T5) $[2, 6, 24]$ $154432.70553532377$
16.0.723...984.2 $x^{16} - 4 x^{14} - 27 x^{12} + 44 x^{10} + 304 x^{8} + 1320 x^{6} + 5093 x^{4} - 14296 x^{2} + 10201$ $2^{32}\cdot 17^{14}$ $C_8\times C_2$ (as 16T5) $[2, 2, 8]$ $154432.70553532377$
16.0.723...984.3 $x^{16} + 4 x^{14} - 27 x^{12} - 44 x^{10} + 304 x^{8} - 1320 x^{6} + 5093 x^{4} + 14296 x^{2} + 10201$ $2^{32}\cdot 17^{14}$ $C_8\times C_2$ (as 16T5) $[2, 6, 6]$ $103646.40189541418$
16.0.988...424.1 $x^{16} - 8 x^{15} + 36 x^{14} - 112 x^{13} + 346 x^{12} - 984 x^{11} + 2640 x^{10} - 5896 x^{9} + 13211 x^{8} - 25432 x^{7} + 50016 x^{6} - 77960 x^{5} + 132922 x^{4} - 157696 x^{3} + 233836 x^{2} - 164920 x + 214303$ $2^{62}\cdot 11^{8}$ $C_8\times C_2$ (as 16T5) $[565]$ $15753.94986242651$
16.0.988...424.2 $x^{16} - 8 x^{15} + 68 x^{14} - 336 x^{13} + 1514 x^{12} - 5080 x^{11} + 14784 x^{10} - 34408 x^{9} + 67067 x^{8} - 105688 x^{7} + 133904 x^{6} - 133032 x^{5} + 100122 x^{4} - 54592 x^{3} + 20220 x^{2} - 4536 x + 463$ $2^{62}\cdot 11^{8}$ $C_8\times C_2$ (as 16T5) $[5]$ $1365751.160205918$
16.0.112...000.1 $x^{16} + 40 x^{14} + 620 x^{12} + 4800 x^{10} + 19950 x^{8} + 44000 x^{6} + 47000 x^{4} + 20000 x^{2} + 2500$ $2^{62}\cdot 5^{12}$ $C_8\times C_2$ (as 16T5) $[3, 246]$ $12198.951274811623$
16.16.112...000.1 $x^{16} - 40 x^{14} + 620 x^{12} - 4800 x^{10} + 19950 x^{8} - 44000 x^{6} + 47000 x^{4} - 20000 x^{2} + 2500$ $2^{62}\cdot 5^{12}$ $C_8\times C_2$ (as 16T5) trivial $162380335.1718013$
16.0.248...296.1 $x^{16} - 5 x^{14} + 75 x^{12} - 555 x^{10} + 4458 x^{8} - 14529 x^{6} + 11641 x^{4} + 7546 x^{2} + 3481$ $2^{16}\cdot 41^{14}$ $C_8\times C_2$ (as 16T5) $[8]$ $1737529.057604532$
16.0.285...089.6 $x^{16} - 6 x^{15} + 40 x^{14} - 152 x^{13} + 705 x^{12} - 2142 x^{11} + 7860 x^{10} - 19323 x^{9} + 60042 x^{8} - 119410 x^{7} + 322825 x^{6} - 498338 x^{5} + 1197274 x^{4} - 1299079 x^{3} + 2829154 x^{2} - 1635129 x + 3329789$ $17^{14}\cdot 19^{8}$ $C_8\times C_2$ (as 16T5) $[5, 520]$ $3640.01221338$
16.0.376...784.1 $x^{16} - 8 x^{15} + 20 x^{14} + 26 x^{12} - 520 x^{11} + 768 x^{10} + 1880 x^{9} - 853 x^{8} - 15304 x^{7} + 3152 x^{6} + 59544 x^{5} + 25482 x^{4} - 175600 x^{3} - 155892 x^{2} + 257304 x + 353263$ $2^{62}\cdot 13^{8}$ $C_8\times C_2$ (as 16T5) $[9, 9]$ $108889.88555195347$
16.16.376...784.1 $x^{16} - 8 x^{15} - 12 x^{14} + 224 x^{13} - 182 x^{12} - 2184 x^{11} + 3600 x^{10} + 8312 x^{9} - 19381 x^{8} - 7240 x^{7} + 36768 x^{6} - 14600 x^{5} - 16214 x^{4} + 13904 x^{3} - 2564 x^{2} - 424 x + 127$ $2^{62}\cdot 13^{8}$ $C_8\times C_2$ (as 16T5) trivial $294948493.2252423$
16.16.395...696.1 $x^{16} - 48 x^{14} + 936 x^{12} - 9504 x^{10} + 53460 x^{8} - 163296 x^{6} + 244944 x^{4} - 139968 x^{2} + 12769$ $2^{64}\cdot 11^{8}$ $C_8\times C_2$ (as 16T5) trivial $571177340.2299249$
16.0.395...696.1 $x^{16} + 214358881$ $2^{64}\cdot 11^{8}$ $C_8\times C_2$ (as 16T5) $[226]$ $1365751.160205918$
16.0.395...696.2 $x^{16} + 48 x^{14} + 936 x^{12} + 9504 x^{10} + 53460 x^{8} + 163296 x^{6} + 244944 x^{4} + 139968 x^{2} + 12769$ $2^{64}\cdot 11^{8}$ $C_8\times C_2$ (as 16T5) $[226]$ $82984.7429060446$
16.0.431...000.1 $x^{16} - 2 x^{15} + 27 x^{14} - 44 x^{13} + 452 x^{12} - 644 x^{11} + 5131 x^{10} - 6202 x^{9} + 42489 x^{8} - 42728 x^{7} + 257239 x^{6} - 204038 x^{5} + 1104650 x^{4} - 624150 x^{3} + 3070971 x^{2} - 944592 x + 4250681$ $2^{16}\cdot 5^{8}\cdot 17^{14}$ $C_8\times C_2$ (as 16T5) $[40, 80]$ $3640.012213375973$
16.0.431...000.2 $x^{16} + 41 x^{14} + 660 x^{12} + 5303 x^{10} + 22483 x^{8} + 49767 x^{6} + 54752 x^{4} + 25265 x^{2} + 2209$ $2^{16}\cdot 5^{8}\cdot 17^{14}$ $C_8\times C_2$ (as 16T5) $[8, 16]$ $81485.0410293661$
Next   displayed columns for results