Normalized defining polynomial
\( x^{16} - x^{15} - 22 x^{14} + 17 x^{13} + 172 x^{12} - 92 x^{11} - 601 x^{10} + 196 x^{9} + 1014 x^{8} - 189 x^{7} - 844 x^{6} + 74 x^{5} + 325 x^{4} - 46 x^{2} - 4 x + 1 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[16, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(65772588499765987890625=5^{8}\cdot 17^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $26.68$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(85=5\cdot 17\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{85}(64,·)$, $\chi_{85}(1,·)$, $\chi_{85}(66,·)$, $\chi_{85}(4,·)$, $\chi_{85}(69,·)$, $\chi_{85}(9,·)$, $\chi_{85}(76,·)$, $\chi_{85}(16,·)$, $\chi_{85}(81,·)$, $\chi_{85}(19,·)$, $\chi_{85}(84,·)$, $\chi_{85}(21,·)$, $\chi_{85}(26,·)$, $\chi_{85}(36,·)$, $\chi_{85}(49,·)$, $\chi_{85}(59,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{9} - \frac{1}{2} a^{6} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{10} - \frac{1}{2} a^{7} - \frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{11} - \frac{1}{2} a^{8} - \frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{183345026} a^{15} - \frac{720663}{183345026} a^{14} + \frac{29652739}{183345026} a^{13} - \frac{6032797}{183345026} a^{12} + \frac{38622761}{183345026} a^{11} - \frac{72773275}{183345026} a^{10} + \frac{5945279}{183345026} a^{9} - \frac{38414421}{183345026} a^{8} + \frac{89629411}{183345026} a^{7} - \frac{57930471}{183345026} a^{6} - \frac{15036833}{183345026} a^{5} - \frac{41945697}{183345026} a^{4} + \frac{25420041}{183345026} a^{3} - \frac{64296813}{183345026} a^{2} - \frac{60208255}{183345026} a - \frac{41176638}{91672513}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1299965.95967 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_8$ (as 16T5):
| An abelian group of order 16 |
| The 16 conjugacy class representatives for $C_8\times C_2$ |
| Character table for $C_8\times C_2$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\sqrt{17}) \), \(\Q(\sqrt{85}) \), \(\Q(\sqrt{5}, \sqrt{17})\), 4.4.4913.1, 4.4.122825.1, 8.8.15085980625.1, \(\Q(\zeta_{17})^+\), 8.8.256461670625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{8}$ | R | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 5 | Data not computed | ||||||
| 17 | Data not computed | ||||||