Normalized defining polynomial
\( x^{16} - x^{15} + 12 x^{14} - 17 x^{13} + 2 x^{12} - 75 x^{11} - 142 x^{10} - 399 x^{9} + 470 x^{8} - 121 x^{7} + 3168 x^{6} + 5225 x^{5} + 8927 x^{4} + 11662 x^{3} + 12432 x^{2} + 7816 x + 4336 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(41107867812353742431640625=5^{12}\cdot 17^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $39.89$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(85=5\cdot 17\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{85}(64,·)$, $\chi_{85}(1,·)$, $\chi_{85}(2,·)$, $\chi_{85}(4,·)$, $\chi_{85}(69,·)$, $\chi_{85}(8,·)$, $\chi_{85}(77,·)$, $\chi_{85}(16,·)$, $\chi_{85}(81,·)$, $\chi_{85}(83,·)$, $\chi_{85}(84,·)$, $\chi_{85}(21,·)$, $\chi_{85}(32,·)$, $\chi_{85}(42,·)$, $\chi_{85}(43,·)$, $\chi_{85}(53,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{7} - \frac{1}{4} a^{6} - \frac{1}{4} a^{5} - \frac{1}{4} a^{4} + \frac{1}{4} a^{3} + \frac{1}{4} a^{2}$, $\frac{1}{4} a^{8} - \frac{1}{4} a^{2}$, $\frac{1}{4} a^{9} - \frac{1}{4} a^{3}$, $\frac{1}{4} a^{10} - \frac{1}{4} a^{4}$, $\frac{1}{8} a^{11} - \frac{1}{8} a^{10} - \frac{1}{8} a^{9} - \frac{1}{8} a^{5} + \frac{1}{8} a^{4} + \frac{1}{8} a^{3}$, $\frac{1}{8} a^{12} - \frac{1}{8} a^{9} - \frac{1}{8} a^{6} + \frac{1}{8} a^{3}$, $\frac{1}{32} a^{13} - \frac{1}{16} a^{12} - \frac{1}{32} a^{11} - \frac{1}{8} a^{10} + \frac{1}{32} a^{9} + \frac{1}{16} a^{8} + \frac{1}{32} a^{7} - \frac{1}{4} a^{6} + \frac{3}{32} a^{5} + \frac{1}{16} a^{4} + \frac{1}{32} a^{3} + \frac{3}{8} a^{2} - \frac{1}{2} a - \frac{1}{4}$, $\frac{1}{287648} a^{14} - \frac{59}{35956} a^{13} + \frac{17107}{287648} a^{12} - \frac{3155}{143824} a^{11} - \frac{23583}{287648} a^{10} + \frac{8239}{71912} a^{9} - \frac{34515}{287648} a^{8} - \frac{9767}{143824} a^{7} + \frac{16651}{287648} a^{6} - \frac{37}{356} a^{5} + \frac{35581}{287648} a^{4} - \frac{1389}{143824} a^{3} - \frac{4649}{17978} a^{2} - \frac{9005}{35956} a - \frac{7115}{17978}$, $\frac{1}{765438287643647648} a^{15} + \frac{21037299445}{95679785955455956} a^{14} - \frac{3018935244648289}{382719143821823824} a^{13} + \frac{585556165806002}{23919946488863989} a^{12} + \frac{20594261425782973}{382719143821823824} a^{11} + \frac{4048834567557887}{191359571910911912} a^{10} + \frac{435936975185113}{95679785955455956} a^{9} + \frac{5613929370750201}{47839892977727978} a^{8} + \frac{24505262305291299}{382719143821823824} a^{7} - \frac{35030872440772747}{191359571910911912} a^{6} - \frac{47757350764564027}{382719143821823824} a^{5} - \frac{595290168700045}{23919946488863989} a^{4} + \frac{273564998943326139}{765438287643647648} a^{3} - \frac{23789804694035911}{191359571910911912} a^{2} - \frac{10220102721128446}{23919946488863989} a + \frac{18051254894262569}{95679785955455956}$
Class group and class number
$C_{146}$, which has order $146$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 55081.0821685 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_8$ (as 16T5):
| An abelian group of order 16 |
| The 16 conjugacy class representatives for $C_8\times C_2$ |
| Character table for $C_8\times C_2$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\sqrt{17}) \), \(\Q(\sqrt{85}) \), \(\Q(\sqrt{5}, \sqrt{17})\), 4.4.122825.1, 4.4.4913.1, 8.8.15085980625.1, 8.0.6411541765625.2, 8.0.6411541765625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 5 | Data not computed | ||||||
| 17 | Data not computed | ||||||