Normalized defining polynomial
\( x^{16} + 48 x^{14} + 936 x^{12} + 9504 x^{10} + 53460 x^{8} + 163296 x^{6} + 244944 x^{4} + 139968 x^{2} + 12769 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(3954223417733761003417501696=2^{64}\cdot 11^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $53.07$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(352=2^{5}\cdot 11\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{352}(1,·)$, $\chi_{352}(67,·)$, $\chi_{352}(197,·)$, $\chi_{352}(263,·)$, $\chi_{352}(265,·)$, $\chi_{352}(331,·)$, $\chi_{352}(21,·)$, $\chi_{352}(87,·)$, $\chi_{352}(89,·)$, $\chi_{352}(155,·)$, $\chi_{352}(285,·)$, $\chi_{352}(351,·)$, $\chi_{352}(109,·)$, $\chi_{352}(175,·)$, $\chi_{352}(177,·)$, $\chi_{352}(243,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{35} a^{8} - \frac{11}{35} a^{6} + \frac{1}{7} a^{4} + \frac{12}{35} a^{2} - \frac{13}{35}$, $\frac{1}{3955} a^{9} + \frac{934}{3955} a^{7} - \frac{97}{791} a^{5} + \frac{397}{3955} a^{3} - \frac{1868}{3955} a$, $\frac{1}{3955} a^{10} + \frac{6}{791} a^{8} + \frac{1549}{3955} a^{6} - \frac{24}{565} a^{4} - \frac{851}{3955} a^{2} - \frac{1}{35}$, $\frac{1}{3955} a^{11} + \frac{1214}{3955} a^{7} - \frac{1438}{3955} a^{5} - \frac{128}{565} a^{3} + \frac{557}{3955} a$, $\frac{1}{3955} a^{12} - \frac{29}{3955} a^{8} + \frac{74}{791} a^{6} + \frac{799}{3955} a^{4} + \frac{1461}{3955} a^{2} + \frac{3}{35}$, $\frac{1}{3955} a^{13} - \frac{229}{3955} a^{7} - \frac{1401}{3955} a^{5} + \frac{1109}{3955} a^{3} + \frac{1537}{3955} a$, $\frac{1}{3955} a^{14} - \frac{3}{3955} a^{8} + \frac{68}{3955} a^{6} - \frac{1716}{3955} a^{4} + \frac{42}{565} a^{2} + \frac{9}{35}$, $\frac{1}{3955} a^{15} - \frac{31}{113} a^{7} + \frac{112}{565} a^{5} + \frac{297}{791} a^{3} - \frac{632}{3955} a$
Class group and class number
$C_{226}$, which has order $226$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 82984.7429060446 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_8$ (as 16T5):
| An abelian group of order 16 |
| The 16 conjugacy class representatives for $C_8\times C_2$ |
| Character table for $C_8\times C_2$ |
Intermediate fields
| \(\Q(\sqrt{11}) \), \(\Q(\sqrt{2}) \), \(\Q(\sqrt{22}) \), \(\Q(\sqrt{2}, \sqrt{11})\), \(\Q(\zeta_{16})^+\), 4.4.247808.1, 8.8.245635219456.1, 8.0.2147483648.1, 8.0.31441308090368.8 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 11 | Data not computed | ||||||