Properties

Label 16.16.1063418086...8416.1
Degree $16$
Signature $[16, 0]$
Discriminant $2^{64}\cdot 7^{8}$
Root discriminant $42.33$
Ramified primes $2, 7$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group $C_8\times C_2$ (as 16T5)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![961, 0, -8192, 0, 21504, 0, -21504, 0, 10560, 0, -2816, 0, 416, 0, -32, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 32*x^14 + 416*x^12 - 2816*x^10 + 10560*x^8 - 21504*x^6 + 21504*x^4 - 8192*x^2 + 961)
 
gp: K = bnfinit(x^16 - 32*x^14 + 416*x^12 - 2816*x^10 + 10560*x^8 - 21504*x^6 + 21504*x^4 - 8192*x^2 + 961, 1)
 

Normalized defining polynomial

\( x^{16} - 32 x^{14} + 416 x^{12} - 2816 x^{10} + 10560 x^{8} - 21504 x^{6} + 21504 x^{4} - 8192 x^{2} + 961 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[16, 0]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(106341808682864896865468416=2^{64}\cdot 7^{8}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $42.33$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 7$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(224=2^{5}\cdot 7\)
Dirichlet character group:    $\lbrace$$\chi_{224}(1,·)$, $\chi_{224}(195,·)$, $\chi_{224}(197,·)$, $\chi_{224}(139,·)$, $\chi_{224}(141,·)$, $\chi_{224}(83,·)$, $\chi_{224}(85,·)$, $\chi_{224}(27,·)$, $\chi_{224}(29,·)$, $\chi_{224}(223,·)$, $\chi_{224}(167,·)$, $\chi_{224}(169,·)$, $\chi_{224}(111,·)$, $\chi_{224}(113,·)$, $\chi_{224}(55,·)$, $\chi_{224}(57,·)$$\rbrace$
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{3} a^{8} - \frac{1}{3} a^{6} - \frac{1}{3} a^{4} + \frac{1}{3} a^{2} - \frac{1}{3}$, $\frac{1}{93} a^{9} + \frac{11}{93} a^{7} - \frac{19}{93} a^{5} - \frac{11}{93} a^{3} + \frac{8}{93} a$, $\frac{1}{93} a^{10} + \frac{11}{93} a^{8} - \frac{19}{93} a^{6} - \frac{11}{93} a^{4} + \frac{8}{93} a^{2}$, $\frac{1}{93} a^{11} + \frac{46}{93} a^{7} + \frac{4}{31} a^{5} + \frac{12}{31} a^{3} + \frac{5}{93} a$, $\frac{1}{93} a^{12} + \frac{5}{31} a^{8} + \frac{43}{93} a^{6} - \frac{26}{93} a^{4} - \frac{26}{93} a^{2} + \frac{1}{3}$, $\frac{1}{93} a^{13} - \frac{29}{93} a^{7} - \frac{20}{93} a^{5} + \frac{46}{93} a^{3} + \frac{4}{93} a$, $\frac{1}{93} a^{14} + \frac{2}{93} a^{8} + \frac{14}{31} a^{6} + \frac{5}{31} a^{4} + \frac{35}{93} a^{2} - \frac{1}{3}$, $\frac{1}{93} a^{15} + \frac{20}{93} a^{7} - \frac{40}{93} a^{5} - \frac{12}{31} a^{3} + \frac{46}{93} a$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $15$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 122221144.043 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2\times C_8$ (as 16T5):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
An abelian group of order 16
The 16 conjugacy class representatives for $C_8\times C_2$
Character table for $C_8\times C_2$

Intermediate fields

\(\Q(\sqrt{7}) \), \(\Q(\sqrt{2}) \), \(\Q(\sqrt{14}) \), \(\Q(\sqrt{2}, \sqrt{7})\), \(\Q(\zeta_{16})^+\), 4.4.100352.1, 8.8.40282095616.1, 8.8.5156108238848.1, \(\Q(\zeta_{32})^+\)

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ R ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/31.1.0.1}{1} }^{16}$ ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
2Data not computed
$7$7.8.4.1$x^{8} + 14 x^{6} + 539 x^{4} + 343 x^{2} + 60025$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
7.8.4.1$x^{8} + 14 x^{6} + 539 x^{4} + 343 x^{2} + 60025$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$