Normalized defining polynomial
\( x^{16} - 8 x^{15} + 60 x^{14} - 280 x^{13} + 1126 x^{12} - 3480 x^{11} + 9068 x^{10} - 19160 x^{9} + 33497 x^{8} - 47584 x^{7} + 54432 x^{6} - 49136 x^{5} + 34192 x^{4} - 17680 x^{3} + 6408 x^{2} - 1456 x + 158 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(26585452170716224216367104=2^{62}\cdot 7^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $38.82$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(224=2^{5}\cdot 7\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{224}(1,·)$, $\chi_{224}(195,·)$, $\chi_{224}(139,·)$, $\chi_{224}(209,·)$, $\chi_{224}(211,·)$, $\chi_{224}(153,·)$, $\chi_{224}(27,·)$, $\chi_{224}(97,·)$, $\chi_{224}(99,·)$, $\chi_{224}(41,·)$, $\chi_{224}(43,·)$, $\chi_{224}(113,·)$, $\chi_{224}(83,·)$, $\chi_{224}(155,·)$, $\chi_{224}(169,·)$, $\chi_{224}(57,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{9284159} a^{14} - \frac{7}{9284159} a^{13} - \frac{151212}{9284159} a^{12} + \frac{907363}{9284159} a^{11} - \frac{70197}{299489} a^{10} + \frac{2562874}{9284159} a^{9} + \frac{1539952}{9284159} a^{8} - \frac{2271614}{9284159} a^{7} - \frac{3528087}{9284159} a^{6} - \frac{3892710}{9284159} a^{5} + \frac{214139}{9284159} a^{4} + \frac{1726896}{9284159} a^{3} + \frac{2456004}{9284159} a^{2} + \frac{2612508}{9284159} a + \frac{10079}{117521}$, $\frac{1}{4168587391} a^{15} + \frac{7}{134470561} a^{14} + \frac{92688810}{4168587391} a^{13} - \frac{636434460}{4168587391} a^{12} + \frac{888100971}{4168587391} a^{11} - \frac{22708247}{52766929} a^{10} - \frac{789147645}{4168587391} a^{9} + \frac{82721182}{4168587391} a^{8} + \frac{1409451290}{4168587391} a^{7} + \frac{960521853}{4168587391} a^{6} - \frac{101167704}{4168587391} a^{5} - \frac{1955684312}{4168587391} a^{4} + \frac{1354833244}{4168587391} a^{3} - \frac{64528591}{134470561} a^{2} - \frac{1521506060}{4168587391} a - \frac{25124697}{52766929}$
Class group and class number
$C_{4}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 620029.352334 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_8$ (as 16T5):
| An abelian group of order 16 |
| The 16 conjugacy class representatives for $C_8\times C_2$ |
| Character table for $C_8\times C_2$ |
Intermediate fields
| \(\Q(\sqrt{-7}) \), \(\Q(\sqrt{2}) \), \(\Q(\sqrt{-14}) \), \(\Q(\sqrt{2}, \sqrt{-7})\), \(\Q(\zeta_{16})^+\), 4.0.100352.5, 8.0.10070523904.2, 8.0.2147483648.1, 8.8.5156108238848.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.31.8 | $x^{8} + 24 x^{6} + 4 x^{4} + 16 x^{2} + 2$ | $8$ | $1$ | $31$ | $C_8$ | $[3, 4, 5]$ |
| 2.8.31.8 | $x^{8} + 24 x^{6} + 4 x^{4} + 16 x^{2} + 2$ | $8$ | $1$ | $31$ | $C_8$ | $[3, 4, 5]$ | |
| $7$ | 7.8.4.1 | $x^{8} + 14 x^{6} + 539 x^{4} + 343 x^{2} + 60025$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 7.8.4.1 | $x^{8} + 14 x^{6} + 539 x^{4} + 343 x^{2} + 60025$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |