Normalized defining polynomial
\( x^{16} - 8 x^{15} + 68 x^{14} - 336 x^{13} + 1514 x^{12} - 5080 x^{11} + 14784 x^{10} - 34408 x^{9} + 67067 x^{8} - 105688 x^{7} + 133904 x^{6} - 133032 x^{5} + 100122 x^{4} - 54592 x^{3} + 20220 x^{2} - 4536 x + 463 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(988555854433440250854375424=2^{62}\cdot 11^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $48.66$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(352=2^{5}\cdot 11\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{352}(1,·)$, $\chi_{352}(67,·)$, $\chi_{352}(65,·)$, $\chi_{352}(265,·)$, $\chi_{352}(331,·)$, $\chi_{352}(131,·)$, $\chi_{352}(89,·)$, $\chi_{352}(153,·)$, $\chi_{352}(155,·)$, $\chi_{352}(219,·)$, $\chi_{352}(243,·)$, $\chi_{352}(241,·)$, $\chi_{352}(43,·)$, $\chi_{352}(177,·)$, $\chi_{352}(307,·)$, $\chi_{352}(329,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{17} a^{11} + \frac{3}{17} a^{10} + \frac{5}{17} a^{9} + \frac{6}{17} a^{8} - \frac{1}{17} a^{7} + \frac{5}{17} a^{6} - \frac{5}{17} a^{4} - \frac{6}{17} a^{3} - \frac{6}{17} a - \frac{1}{17}$, $\frac{1}{17} a^{12} - \frac{4}{17} a^{10} + \frac{8}{17} a^{9} - \frac{2}{17} a^{8} + \frac{8}{17} a^{7} + \frac{2}{17} a^{6} - \frac{5}{17} a^{5} - \frac{8}{17} a^{4} + \frac{1}{17} a^{3} - \frac{6}{17} a^{2} + \frac{3}{17}$, $\frac{1}{17} a^{13} + \frac{3}{17} a^{10} + \frac{1}{17} a^{9} - \frac{2}{17} a^{8} - \frac{2}{17} a^{7} - \frac{2}{17} a^{6} - \frac{8}{17} a^{5} - \frac{2}{17} a^{4} + \frac{4}{17} a^{3} - \frac{4}{17} a - \frac{4}{17}$, $\frac{1}{211307807} a^{14} - \frac{7}{211307807} a^{13} - \frac{1759082}{211307807} a^{12} - \frac{1875288}{211307807} a^{11} - \frac{103060821}{211307807} a^{10} - \frac{2432449}{12429871} a^{9} - \frac{86701018}{211307807} a^{8} + \frac{52231406}{211307807} a^{7} + \frac{39657776}{211307807} a^{6} - \frac{8599871}{211307807} a^{5} - \frac{74564626}{211307807} a^{4} - \frac{67821205}{211307807} a^{3} - \frac{8946042}{211307807} a^{2} + \frac{66622861}{211307807} a - \frac{75587497}{211307807}$, $\frac{1}{211307807} a^{15} - \frac{1759131}{211307807} a^{13} - \frac{1758991}{211307807} a^{12} - \frac{4318998}{211307807} a^{11} - \frac{54274733}{211307807} a^{10} + \frac{71312907}{211307807} a^{9} + \frac{91677572}{211307807} a^{8} - \frac{1751051}{12429871} a^{7} + \frac{7977270}{211307807} a^{6} + \frac{14394729}{211307807} a^{5} + \frac{19290092}{211307807} a^{4} - \frac{885965}{2178431} a^{3} - \frac{70578659}{211307807} a^{2} - \frac{69132697}{211307807} a + \frac{30231716}{211307807}$
Class group and class number
$C_{5}$, which has order $5$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1365751.160205918 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_8$ (as 16T5):
| An abelian group of order 16 |
| The 16 conjugacy class representatives for $C_8\times C_2$ |
| Character table for $C_8\times C_2$ |
Intermediate fields
| \(\Q(\sqrt{-11}) \), \(\Q(\sqrt{2}) \), \(\Q(\sqrt{-22}) \), \(\Q(\sqrt{2}, \sqrt{-11})\), \(\Q(\zeta_{16})^+\), 4.0.247808.2, 8.0.61408804864.2, 8.8.31441308090368.1, 8.0.2147483648.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.1.0.1}{1} }^{16}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 11 | Data not computed | ||||||