Normalized defining polynomial
\( x^{16} - 2 x^{15} + 27 x^{14} - 44 x^{13} + 452 x^{12} - 644 x^{11} + 5131 x^{10} - 6202 x^{9} + 42489 x^{8} - 42728 x^{7} + 257239 x^{6} - 204038 x^{5} + 1104650 x^{4} - 624150 x^{3} + 3070971 x^{2} - 944592 x + 4250681 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(4310472359920663782400000000=2^{16}\cdot 5^{8}\cdot 17^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $53.35$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(340=2^{2}\cdot 5\cdot 17\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{340}(1,·)$, $\chi_{340}(259,·)$, $\chi_{340}(179,·)$, $\chi_{340}(321,·)$, $\chi_{340}(81,·)$, $\chi_{340}(19,·)$, $\chi_{340}(21,·)$, $\chi_{340}(281,·)$, $\chi_{340}(219,·)$, $\chi_{340}(161,·)$, $\chi_{340}(101,·)$, $\chi_{340}(239,·)$, $\chi_{340}(339,·)$, $\chi_{340}(121,·)$, $\chi_{340}(59,·)$, $\chi_{340}(319,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{400593428478881097827245773302881088393} a^{15} - \frac{184158245065601397963384680542760671563}{400593428478881097827245773302881088393} a^{14} + \frac{166743781658391302776945731349388880313}{400593428478881097827245773302881088393} a^{13} - \frac{18657757078926186197851057835871506879}{400593428478881097827245773302881088393} a^{12} + \frac{169230170551386115644585856256071962061}{400593428478881097827245773302881088393} a^{11} - \frac{119920449456453723375903538035539726303}{400593428478881097827245773302881088393} a^{10} - \frac{54765191344175713646208267186177825300}{400593428478881097827245773302881088393} a^{9} + \frac{22168721469238902627489976598959453048}{400593428478881097827245773302881088393} a^{8} - \frac{121596919807155761359802818740079911839}{400593428478881097827245773302881088393} a^{7} - \frac{96376306318118623787101429781014958413}{400593428478881097827245773302881088393} a^{6} - \frac{175696076693578616613555416637559254578}{400593428478881097827245773302881088393} a^{5} + \frac{196134163011364885560152257017518234070}{400593428478881097827245773302881088393} a^{4} + \frac{175151554093932637652341078829531042480}{400593428478881097827245773302881088393} a^{3} - \frac{190522142936040853664770548608301907006}{400593428478881097827245773302881088393} a^{2} + \frac{170104853134395931079703239321351085929}{400593428478881097827245773302881088393} a - \frac{55979784714792070753945509364127857952}{400593428478881097827245773302881088393}$
Class group and class number
$C_{40}\times C_{80}$, which has order $3200$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3640.012213375973 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_8$ (as 16T5):
| An abelian group of order 16 |
| The 16 conjugacy class representatives for $C_8\times C_2$ |
| Character table for $C_8\times C_2$ |
Intermediate fields
| \(\Q(\sqrt{-5}) \), \(\Q(\sqrt{17}) \), \(\Q(\sqrt{-85}) \), \(\Q(\sqrt{-5}, \sqrt{17})\), 4.4.4913.1, 4.0.1965200.1, 8.0.3862011040000.2, \(\Q(\zeta_{17})^+\), 8.0.65654187680000.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{8}$ | R | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.8.1 | $x^{8} + 28 x^{4} + 144$ | $2$ | $4$ | $8$ | $C_4\times C_2$ | $[2]^{4}$ |
| 2.8.8.1 | $x^{8} + 28 x^{4} + 144$ | $2$ | $4$ | $8$ | $C_4\times C_2$ | $[2]^{4}$ | |
| 5 | Data not computed | ||||||
| 17 | Data not computed | ||||||