Properties

Label 16.0.72317725844...7984.2
Degree $16$
Signature $[0, 8]$
Discriminant $2^{32}\cdot 17^{14}$
Root discriminant $47.72$
Ramified primes $2, 17$
Class number $32$ (GRH)
Class group $[2, 2, 8]$ (GRH)
Galois group $C_8\times C_2$ (as 16T5)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![10201, 0, -14296, 0, 5093, 0, 1320, 0, 304, 0, 44, 0, -27, 0, -4, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 4*x^14 - 27*x^12 + 44*x^10 + 304*x^8 + 1320*x^6 + 5093*x^4 - 14296*x^2 + 10201)
 
gp: K = bnfinit(x^16 - 4*x^14 - 27*x^12 + 44*x^10 + 304*x^8 + 1320*x^6 + 5093*x^4 - 14296*x^2 + 10201, 1)
 

Normalized defining polynomial

\( x^{16} - 4 x^{14} - 27 x^{12} + 44 x^{10} + 304 x^{8} + 1320 x^{6} + 5093 x^{4} - 14296 x^{2} + 10201 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 8]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(723177258444187191407017984=2^{32}\cdot 17^{14}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $47.72$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 17$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(136=2^{3}\cdot 17\)
Dirichlet character group:    $\lbrace$$\chi_{136}(1,·)$, $\chi_{136}(67,·)$, $\chi_{136}(77,·)$, $\chi_{136}(15,·)$, $\chi_{136}(81,·)$, $\chi_{136}(87,·)$, $\chi_{136}(89,·)$, $\chi_{136}(93,·)$, $\chi_{136}(33,·)$, $\chi_{136}(35,·)$, $\chi_{136}(111,·)$, $\chi_{136}(115,·)$, $\chi_{136}(53,·)$, $\chi_{136}(123,·)$, $\chi_{136}(117,·)$, $\chi_{136}(127,·)$$\rbrace$
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{4} a^{12} + \frac{1}{4}$, $\frac{1}{404} a^{13} + \frac{34}{101} a^{11} - \frac{19}{101} a^{9} - \frac{23}{101} a^{7} - \frac{13}{101} a^{5} + \frac{25}{101} a^{3} + \frac{105}{404} a$, $\frac{1}{106934489978116} a^{14} - \frac{2979271606241}{106934489978116} a^{12} - \frac{6546518867105}{26733622494529} a^{10} + \frac{8590981813554}{26733622494529} a^{8} + \frac{8370602232817}{26733622494529} a^{6} + \frac{5203225098104}{26733622494529} a^{4} + \frac{30764870783529}{106934489978116} a^{2} + \frac{450690051659}{1058757326516}$, $\frac{1}{106934489978116} a^{15} - \frac{33844479161}{53467244989058} a^{13} + \frac{12246423678554}{26733622494529} a^{11} + \frac{6738156492151}{26733622494529} a^{9} - \frac{5128553680262}{26733622494529} a^{7} - \frac{5913726830314}{26733622494529} a^{5} + \frac{1119665641081}{106934489978116} a^{3} + \frac{15216201657353}{53467244989058} a$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}\times C_{2}\times C_{8}$, which has order $32$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $7$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 154432.70553532377 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2\times C_8$ (as 16T5):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
An abelian group of order 16
The 16 conjugacy class representatives for $C_8\times C_2$
Character table for $C_8\times C_2$

Intermediate fields

\(\Q(\sqrt{-2}) \), \(\Q(\sqrt{17}) \), \(\Q(\sqrt{-34}) \), \(\Q(\sqrt{-2}, \sqrt{17})\), 4.4.4913.1, 4.0.314432.2, 8.0.98867482624.1, 8.0.105046700288.1, 8.8.1680747204608.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/13.2.0.1}{2} }^{8}$ R ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.8.16.1$x^{8} + 6 x^{6} + 2 x^{4} + 4 x^{2} + 8 x + 12$$4$$2$$16$$C_4\times C_2$$[2, 3]^{2}$
2.8.16.1$x^{8} + 6 x^{6} + 2 x^{4} + 4 x^{2} + 8 x + 12$$4$$2$$16$$C_4\times C_2$$[2, 3]^{2}$
$17$17.8.7.3$x^{8} - 17$$8$$1$$7$$C_8$$[\ ]_{8}$
17.8.7.3$x^{8} - 17$$8$$1$$7$$C_8$$[\ ]_{8}$