Properties

Label 16.0.723...984.2
Degree $16$
Signature $[0, 8]$
Discriminant $7.232\times 10^{26}$
Root discriminant \(47.72\)
Ramified primes $2,17$
Class number $32$ (GRH)
Class group [2, 2, 8] (GRH)
Galois group $C_8\times C_2$ (as 16T5)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 4*x^14 - 27*x^12 + 44*x^10 + 304*x^8 + 1320*x^6 + 5093*x^4 - 14296*x^2 + 10201)
 
gp: K = bnfinit(y^16 - 4*y^14 - 27*y^12 + 44*y^10 + 304*y^8 + 1320*y^6 + 5093*y^4 - 14296*y^2 + 10201, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^16 - 4*x^14 - 27*x^12 + 44*x^10 + 304*x^8 + 1320*x^6 + 5093*x^4 - 14296*x^2 + 10201);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^16 - 4*x^14 - 27*x^12 + 44*x^10 + 304*x^8 + 1320*x^6 + 5093*x^4 - 14296*x^2 + 10201)
 

\( x^{16} - 4x^{14} - 27x^{12} + 44x^{10} + 304x^{8} + 1320x^{6} + 5093x^{4} - 14296x^{2} + 10201 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $16$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[0, 8]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(723177258444187191407017984\) \(\medspace = 2^{32}\cdot 17^{14}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(47.72\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $2^{2}17^{7/8}\approx 47.72025959461256$
Ramified primes:   \(2\), \(17\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q\)
$\card{ \Gal(K/\Q) }$:  $16$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is Galois and abelian over $\Q$.
Conductor:  \(136=2^{3}\cdot 17\)
Dirichlet character group:    $\lbrace$$\chi_{136}(1,·)$, $\chi_{136}(67,·)$, $\chi_{136}(77,·)$, $\chi_{136}(15,·)$, $\chi_{136}(81,·)$, $\chi_{136}(87,·)$, $\chi_{136}(89,·)$, $\chi_{136}(93,·)$, $\chi_{136}(33,·)$, $\chi_{136}(35,·)$, $\chi_{136}(111,·)$, $\chi_{136}(115,·)$, $\chi_{136}(53,·)$, $\chi_{136}(123,·)$, $\chi_{136}(117,·)$, $\chi_{136}(127,·)$$\rbrace$
This is a CM field.
Reflex fields:  unavailable$^{128}$

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{4}a^{12}+\frac{1}{4}$, $\frac{1}{404}a^{13}+\frac{34}{101}a^{11}-\frac{19}{101}a^{9}-\frac{23}{101}a^{7}-\frac{13}{101}a^{5}+\frac{25}{101}a^{3}+\frac{105}{404}a$, $\frac{1}{106934489978116}a^{14}-\frac{2979271606241}{106934489978116}a^{12}-\frac{6546518867105}{26733622494529}a^{10}+\frac{8590981813554}{26733622494529}a^{8}+\frac{8370602232817}{26733622494529}a^{6}+\frac{5203225098104}{26733622494529}a^{4}+\frac{30764870783529}{106934489978116}a^{2}+\frac{450690051659}{1058757326516}$, $\frac{1}{106934489978116}a^{15}-\frac{33844479161}{53467244989058}a^{13}+\frac{12246423678554}{26733622494529}a^{11}+\frac{6738156492151}{26733622494529}a^{9}-\frac{5128553680262}{26733622494529}a^{7}-\frac{5913726830314}{26733622494529}a^{5}+\frac{1119665641081}{106934489978116}a^{3}+\frac{15216201657353}{53467244989058}a$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  No
Index:  Not computed
Inessential primes:  $2$

Class group and class number

$C_{2}\times C_{2}\times C_{8}$, which has order $32$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $7$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{4988903883}{106934489978116}a^{14}-\frac{12706893059}{53467244989058}a^{12}-\frac{17843641928}{26733622494529}a^{10}+\frac{75183729980}{26733622494529}a^{8}+\frac{39553438770}{26733622494529}a^{6}+\frac{873921225780}{26733622494529}a^{4}-\frac{7873762705105}{106934489978116}a^{2}-\frac{232564881219}{529378663258}$, $\frac{2628959753}{53467244989058}a^{14}-\frac{12156118611}{26733622494529}a^{12}-\frac{23481921112}{26733622494529}a^{10}+\frac{255675604093}{26733622494529}a^{8}+\frac{600369750292}{26733622494529}a^{6}+\frac{958351628208}{26733622494529}a^{4}-\frac{8153810538315}{53467244989058}a^{2}-\frac{737013518559}{264689331629}$, $\frac{4725930809}{106934489978116}a^{14}-\frac{6514856015}{53467244989058}a^{12}-\frac{41824735676}{26733622494529}a^{10}+\frac{100456869226}{26733622494529}a^{8}+\frac{472996840542}{26733622494529}a^{6}-\frac{1672439143227}{26733622494529}a^{4}+\frac{7401091865845}{106934489978116}a^{2}-\frac{90539987211}{529378663258}$, $\frac{3185582257}{26733622494529}a^{15}+\frac{5636803273}{26733622494529}a^{14}-\frac{28113617809}{53467244989058}a^{13}-\frac{35766258931}{106934489978116}a^{12}-\frac{73854602328}{26733622494529}a^{11}-\frac{230419180434}{26733622494529}a^{10}+\frac{163647540420}{26733622494529}a^{9}+\frac{39014207034}{26733622494529}a^{8}+\frac{712741402035}{26733622494529}a^{7}+\frac{2336958790386}{26733622494529}a^{6}+\frac{3604598828948}{26733622494529}a^{5}+\frac{12251550635904}{26733622494529}a^{4}+\frac{15265818806693}{26733622494529}a^{3}+\frac{34401431227231}{26733622494529}a^{2}-\frac{29461112364771}{53467244989058}a-\frac{1701741042867}{1058757326516}$, $\frac{50339198061}{106934489978116}a^{15}+\frac{29913710323}{53467244989058}a^{14}-\frac{131808494357}{106934489978116}a^{13}-\frac{153622422455}{106934489978116}a^{12}-\frac{390512720622}{26733622494529}a^{11}-\frac{491112451605}{26733622494529}a^{10}-\frac{26669023470}{26733622494529}a^{9}-\frac{4010626544}{26733622494529}a^{8}+\frac{4203174038657}{26733622494529}a^{7}+\frac{5986259428325}{26733622494529}a^{6}+\frac{24105004781061}{26733622494529}a^{5}+\frac{27626824252858}{26733622494529}a^{4}+\frac{353843041200001}{106934489978116}a^{3}+\frac{181642208449009}{53467244989058}a^{2}-\frac{349996433221873}{106934489978116}a-\frac{4356689396551}{1058757326516}$, $\frac{18788817426}{26733622494529}a^{15}-\frac{1041872937}{1137600957214}a^{14}-\frac{108221924723}{53467244989058}a^{13}+\frac{6359734331}{2275201914428}a^{12}-\frac{569151540309}{26733622494529}a^{11}+\frac{15657761348}{568800478607}a^{10}+\frac{207229531032}{26733622494529}a^{9}-\frac{6522823698}{568800478607}a^{8}+\frac{6037690577484}{26733622494529}a^{7}-\frac{169441717823}{568800478607}a^{6}+\frac{31463383421835}{26733622494529}a^{5}-\frac{857767633818}{568800478607}a^{4}+\frac{129872937309032}{26733622494529}a^{3}-\frac{7023296903861}{1137600957214}a^{2}-\frac{252843613837367}{53467244989058}a+\frac{161792191955}{22526751628}$, $\frac{13682038459}{106934489978116}a^{15}+\frac{1098548298}{26733622494529}a^{14}-\frac{46221204085}{106934489978116}a^{13}+\frac{7863687699}{106934489978116}a^{12}-\frac{95777703129}{26733622494529}a^{11}-\frac{56991416395}{26733622494529}a^{10}+\frac{27928623585}{26733622494529}a^{9}+\frac{29165786604}{26733622494529}a^{8}+\frac{970606965976}{26733622494529}a^{7}+\frac{517671236110}{26733622494529}a^{6}+\frac{6210578972638}{26733622494529}a^{5}+\frac{3058981002436}{26733622494529}a^{4}+\frac{80535850016667}{106934489978116}a^{3}+\frac{5768540494955}{26733622494529}a^{2}-\frac{80992403584525}{106934489978116}a-\frac{314716467285}{1058757326516}$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 154432.70553532377 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{8}\cdot 154432.70553532377 \cdot 32}{2\cdot\sqrt{723177258444187191407017984}}\cr\approx \mathstrut & 0.223190563793084 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^16 - 4*x^14 - 27*x^12 + 44*x^10 + 304*x^8 + 1320*x^6 + 5093*x^4 - 14296*x^2 + 10201)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^16 - 4*x^14 - 27*x^12 + 44*x^10 + 304*x^8 + 1320*x^6 + 5093*x^4 - 14296*x^2 + 10201, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^16 - 4*x^14 - 27*x^12 + 44*x^10 + 304*x^8 + 1320*x^6 + 5093*x^4 - 14296*x^2 + 10201);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^16 - 4*x^14 - 27*x^12 + 44*x^10 + 304*x^8 + 1320*x^6 + 5093*x^4 - 14296*x^2 + 10201);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_2\times C_8$ (as 16T5):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
An abelian group of order 16
The 16 conjugacy class representatives for $C_8\times C_2$
Character table for $C_8\times C_2$

Intermediate fields

\(\Q(\sqrt{-2}) \), \(\Q(\sqrt{17}) \), \(\Q(\sqrt{-34}) \), \(\Q(\sqrt{-2}, \sqrt{17})\), 4.4.4913.1, 4.0.314432.2, 8.0.98867482624.1, 8.0.105046700288.1, 8.8.1680747204608.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R ${\href{/padicField/3.8.0.1}{8} }^{2}$ ${\href{/padicField/5.8.0.1}{8} }^{2}$ ${\href{/padicField/7.8.0.1}{8} }^{2}$ ${\href{/padicField/11.8.0.1}{8} }^{2}$ ${\href{/padicField/13.2.0.1}{2} }^{8}$ R ${\href{/padicField/19.4.0.1}{4} }^{4}$ ${\href{/padicField/23.8.0.1}{8} }^{2}$ ${\href{/padicField/29.8.0.1}{8} }^{2}$ ${\href{/padicField/31.8.0.1}{8} }^{2}$ ${\href{/padicField/37.8.0.1}{8} }^{2}$ ${\href{/padicField/41.8.0.1}{8} }^{2}$ ${\href{/padicField/43.4.0.1}{4} }^{4}$ ${\href{/padicField/47.2.0.1}{2} }^{8}$ ${\href{/padicField/53.4.0.1}{4} }^{4}$ ${\href{/padicField/59.4.0.1}{4} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display 2.8.16.1$x^{8} + 8 x^{7} + 24 x^{6} + 40 x^{5} + 60 x^{4} + 32 x^{3} + 88 x^{2} + 108$$4$$2$$16$$C_4\times C_2$$[2, 3]^{2}$
2.8.16.1$x^{8} + 8 x^{7} + 24 x^{6} + 40 x^{5} + 60 x^{4} + 32 x^{3} + 88 x^{2} + 108$$4$$2$$16$$C_4\times C_2$$[2, 3]^{2}$
\(17\) Copy content Toggle raw display 17.8.7.3$x^{8} + 17$$8$$1$$7$$C_8$$[\ ]_{8}$
17.8.7.3$x^{8} + 17$$8$$1$$7$$C_8$$[\ ]_{8}$