Group action invariants
| Degree $n$ : | $16$ | |
| Transitive number $t$ : | $5$ | |
| Group : | $C_8\times C_2$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $1$ | |
| Generators: | (1,4,5,8,9,11,13,16)(2,3,6,7,10,12,14,15), (1,15,13,12,9,7,5,3)(2,16,14,11,10,8,6,4) | |
| $|\Aut(F/K)|$: | $16$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 3 4: $C_4$ x 2, $C_2^2$ 8: $C_8$ x 2, $C_4\times C_2$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$ x 3
Degree 8: $C_8$ x 2, $C_4\times C_2$
Low degree siblings
There are no siblings with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)$ |
| $ 8, 8 $ | $1$ | $8$ | $( 1, 3, 5, 7, 9,12,13,15)( 2, 4, 6, 8,10,11,14,16)$ |
| $ 8, 8 $ | $1$ | $8$ | $( 1, 4, 5, 8, 9,11,13,16)( 2, 3, 6, 7,10,12,14,15)$ |
| $ 4, 4, 4, 4 $ | $1$ | $4$ | $( 1, 5, 9,13)( 2, 6,10,14)( 3, 7,12,15)( 4, 8,11,16)$ |
| $ 4, 4, 4, 4 $ | $1$ | $4$ | $( 1, 6, 9,14)( 2, 5,10,13)( 3, 8,12,16)( 4, 7,11,15)$ |
| $ 8, 8 $ | $1$ | $8$ | $( 1, 7,13, 3, 9,15, 5,12)( 2, 8,14, 4,10,16, 6,11)$ |
| $ 8, 8 $ | $1$ | $8$ | $( 1, 8,13, 4, 9,16, 5,11)( 2, 7,14, 3,10,15, 6,12)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 9)( 2,10)( 3,12)( 4,11)( 5,13)( 6,14)( 7,15)( 8,16)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1,10)( 2, 9)( 3,11)( 4,12)( 5,14)( 6,13)( 7,16)( 8,15)$ |
| $ 8, 8 $ | $1$ | $8$ | $( 1,11, 5,16, 9, 4,13, 8)( 2,12, 6,15,10, 3,14, 7)$ |
| $ 8, 8 $ | $1$ | $8$ | $( 1,12, 5,15, 9, 3,13, 7)( 2,11, 6,16,10, 4,14, 8)$ |
| $ 4, 4, 4, 4 $ | $1$ | $4$ | $( 1,13, 9, 5)( 2,14,10, 6)( 3,15,12, 7)( 4,16,11, 8)$ |
| $ 4, 4, 4, 4 $ | $1$ | $4$ | $( 1,14, 9, 6)( 2,13,10, 5)( 3,16,12, 8)( 4,15,11, 7)$ |
| $ 8, 8 $ | $1$ | $8$ | $( 1,15,13,12, 9, 7, 5, 3)( 2,16,14,11,10, 8, 6, 4)$ |
| $ 8, 8 $ | $1$ | $8$ | $( 1,16,13,11, 9, 8, 5, 4)( 2,15,14,12,10, 7, 6, 3)$ |
Group invariants
| Order: | $16=2^{4}$ | |
| Cyclic: | No | |
| Abelian: | Yes | |
| Solvable: | Yes | |
| GAP id: | [16, 5] |
| Character table: |
2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
1a 2a 8a 8b 4a 4b 8c 8d 2b 2c 8e 8f 4c 4d 8g 8h
2P 1a 1a 4a 4a 2b 2b 4c 4c 1a 1a 4a 4a 2b 2b 4c 4c
3P 1a 2a 8c 8d 4c 4d 8a 8b 2b 2c 8h 8g 4a 4b 8f 8e
5P 1a 2a 8f 8e 4a 4b 8g 8h 2b 2c 8b 8a 4c 4d 8c 8d
7P 1a 2a 8g 8h 4c 4d 8f 8e 2b 2c 8d 8c 4a 4b 8a 8b
X.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 -1 -1 1 1 -1 -1 1 1 -1 1 -1 1 -1 -1 1
X.3 1 -1 1 -1 1 -1 1 -1 1 -1 -1 1 1 -1 1 -1
X.4 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1
X.5 1 -1 A -A -1 1 -A A 1 -1 -A A -1 1 -A A
X.6 1 -1 -A A -1 1 A -A 1 -1 A -A -1 1 A -A
X.7 1 -1 B -B -A A -/B /B -1 1 B -B A -A /B -/B
X.8 1 -1 -/B /B A -A B -B -1 1 -/B /B -A A -B B
X.9 1 -1 /B -/B A -A -B B -1 1 /B -/B -A A B -B
X.10 1 -1 -B B -A A /B -/B -1 1 -B B A -A -/B /B
X.11 1 1 A A -1 -1 -A -A 1 1 A A -1 -1 -A -A
X.12 1 1 -A -A -1 -1 A A 1 1 -A -A -1 -1 A A
X.13 1 1 B B -A -A -/B -/B -1 -1 -B -B A A /B /B
X.14 1 1 -/B -/B A A B B -1 -1 /B /B -A -A -B -B
X.15 1 1 /B /B A A -B -B -1 -1 -/B -/B -A -A B B
X.16 1 1 -B -B -A -A /B /B -1 -1 B B A A -/B -/B
A = -E(4)
= -Sqrt(-1) = -i
B = -E(8)
|