Properties

Modulus 136
Conductor 136
Order 4
Real no
Primitive yes
Minimal yes
Parity odd
Orbit label 136.j

Related objects

Learn more about

Show commands for: Pari/GP / SageMath
sage: from sage.modular.dirichlet import DirichletCharacter
 
sage: H = DirichletGroup(136)
 
sage: M = H._module
 
sage: chi = DirichletCharacter(H, M([2,2,1]))
 
pari: [g,chi] = znchar(Mod(115,136))
 

Basic properties

sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Modulus = 136
Conductor = 136
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Order = 4
Real = no
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1 \\ if not primitive returns [cond,factorization]
 
Primitive = yes
Minimal = yes
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 
Parity = odd
Orbit label = 136.j
Orbit index = 10

Galois orbit

sage: chi.galois_orbit()
 
pari: order = charorder(g,chi)
 
pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

\(\chi_{136}(115,\cdot)\) \(\chi_{136}(123,\cdot)\)

Values on generators

\((103,69,105)\) → \((-1,-1,i)\)

Values

-113579111315192123
\(-1\)\(1\)\(i\)\(-i\)\(i\)\(-1\)\(-i\)\(-1\)\(1\)\(-1\)\(-1\)\(i\)
value at  e.g. 2

Related number fields

Field of values \(\Q(i)\)

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 136 }(115,·) )\;\) at \(\;a = \) e.g. 2
\(\displaystyle \tau_{2}(\chi_{136}(115,\cdot)) = \sum_{r\in \Z/136\Z} \chi_{136}(115,r) e\left(\frac{r}{68}\right) = -0.0 \)

Jacobi sum

sage: chi.jacobi_sum(n)
 
\( J(\chi_{ 136 }(115,·),\chi_{ 136 }(n,·)) \;\) for \( \; n = \) e.g. 1
\( \displaystyle J(\chi_{136}(115,\cdot),\chi_{136}(1,\cdot)) = \sum_{r\in \Z/136\Z} \chi_{136}(115,r) \chi_{136}(1,1-r) = 0 \)

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 136 }(115,·)) \;\) at \(\; a,b = \) e.g. 1,2
\( \displaystyle K(1,2,\chi_{136}(115,·)) = \sum_{r \in \Z/136\Z} \chi_{136}(115,r) e\left(\frac{1 r + 2 r^{-1}}{136}\right) = -0.1965974904 \)