Normalized defining polynomial
\( x \)
Invariants
Degree: | $1$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[1, 0]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: |
\(1\)
| sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(1.00\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Ramified primes: |
\textrm{None}
| sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q\) | ||
$\card{ \Gal(K/\Q) }$: | $1$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is Galois and abelian over $\Q$. | |||
Conductor: | \(1\) | ||
Dirichlet character group: | $\lbrace$$\chi_{1}(1,·)$$\rbrace$ | ||
This is not a CM field. |
Integral basis
$1$
Monogenic: | Yes | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
Trivial group, which has order $1$
Unit group
Rank: | $0$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: |
\(-1\)
(order $2$)
| sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Regulator: | \( 1 \) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
$\displaystyle\lim_{s\to 1} (s-1)\zeta_K(s) = \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}} =\frac{2^1 (2\pi)^0 \cdot 1\cdot 1}{2\cdot\sqrt 1}=1$
Galois group
A cyclic group of order 1 |
The conjugacy class representative for Trivial |
Character table for Trivial |
Intermediate fields
The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | ${\href{/padicField/2.1.0.1}{1} }$ | ${\href{/padicField/3.1.0.1}{1} }$ | ${\href{/padicField/5.1.0.1}{1} }$ | ${\href{/padicField/7.1.0.1}{1} }$ | ${\href{/padicField/11.1.0.1}{1} }$ | ${\href{/padicField/13.1.0.1}{1} }$ | ${\href{/padicField/17.1.0.1}{1} }$ | ${\href{/padicField/19.1.0.1}{1} }$ | ${\href{/padicField/23.1.0.1}{1} }$ | ${\href{/padicField/29.1.0.1}{1} }$ | ${\href{/padicField/31.1.0.1}{1} }$ | ${\href{/padicField/37.1.0.1}{1} }$ | ${\href{/padicField/41.1.0.1}{1} }$ | ${\href{/padicField/43.1.0.1}{1} }$ | ${\href{/padicField/47.1.0.1}{1} }$ | ${\href{/padicField/53.1.0.1}{1} }$ | ${\href{/padicField/59.1.0.1}{1} }$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
There are no ramified primes.
Artin representations
Label | Dimension | Conductor | Artin stem field | $G$ | Ind | $\chi(c)$ | |
---|---|---|---|---|---|---|---|
* | 1.1.1t1.a.a | $1$ | $1$ | \(\Q\) | $C_1$ | $1$ | $1$ |