Properties

Label 1.1.1t1.a.a
Dimension $1$
Group Trivial
Conductor $1$
Root number $1$
Indicator $1$

Related objects

Learn more

Basic invariants

Dimension: $1$
Group: Trivial
Conductor: 1
Frobenius-Schur indicator: $1$
Root number: $1$
Artin field: \(\Q\)
Galois orbit size: $1$
Smallest permutation container: Trivial
Parity: even
Dirichlet character: \(\chi_{1}(1,\cdot)\)
Projective image: $C_1$
Projective field: \(\Q\)

Defining polynomial

$f(x)$$=$\(x\)  Toggle raw display.

The roots of $f$ are computed in $\Q_{ 2 }$ to precision 5.

Roots:
$r_{ 1 }$ $=$ \( 0 +O(2^{5})\)  Toggle raw display

Generators of the action on the roots $ r_{ 1 } $

Cycle notation

Character values on conjugacy classes

SizeOrderAction on $ r_{ 1 } $ Character value
$1$$1$$()$$1$

The blue line marks the conjugacy class containing complex conjugation.