Properties

Label 1.1.1t1.a
Dimension $1$
Group Trivial
Conductor $1$
Indicator $1$

Related objects

Learn more

Basic invariants

Dimension:$1$
Group:Trivial
Conductor:1
Frobenius-Schur indicator: $1$
Root number: $1$
Artin number field: Galois closure of \(\Q\)
Galois orbit size: $1$
Smallest permutation container: Trivial
Parity: even
Projective image: $C_1$
Projective field: \(\Q\)

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 2 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ \( 0 +O(2^{5})\)  Toggle raw display

Generators of the action on the roots $ r_{ 1 } $

Cycle notation

Character values on conjugacy classes

SizeOrderAction on $ r_{ 1 } $ Character values
$c1$
$1$ $1$ $()$ $1$
The blue line marks the conjugacy class containing complex conjugation.