sage: from dirichlet_conrey import DirichletGroup_conrey # requires nonstandard Sage package to be installed
sage: H = DirichletGroup_conrey(1)
sage: chi = H[1]
pari: [g,chi] = znchar(Mod(1,1))
Basic properties
| sage: chi.conductor()
pari: znconreyconductor(g,chi)
| ||
| Conductor | = | 1 |
| sage: chi.multiplicative_order()
pari: charorder(g,chi)
| ||
| Order | = | 1 |
| Real | = | Yes |
| sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1 \\ if not primitive returns [cond,factorization]
| ||
| Primitive | = | Yes |
| sage: chi.is_odd()
pari: zncharisodd(g,chi)
| ||
| Parity | = | Even |
| Orbit label | = | 1.a |
| Orbit index | = | 1 |
Galois orbit
sage: chi.sage_character().galois_orbit()
pari: order = charorder(g,chi)
pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Values
| 1 |
| \(1\) |
Related number fields
| Field of values | \(\Q\) |
Gauss sum
sage: chi.sage_character().gauss_sum(a)
pari: znchargauss(g,chi,a)
\(\displaystyle \tau_{2}(\chi_{1}(1,\cdot)) = \sum_{r\in \Z/1\Z} \chi_{1}(1,r) e\left(\frac{2r}{1}\right) = 1.0 \)
Jacobi sum
sage: chi.sage_character().jacobi_sum(n)
\( \displaystyle J(\chi_{1}(1,\cdot),\chi_{1}(1,\cdot)) = \sum_{r\in \Z/1\Z} \chi_{1}(1,r) \chi_{1}(1,1-r) = 1 \)
Kloosterman sum
sage: chi.sage_character().kloosterman_sum(a,b)
\( \displaystyle K(1,2,\chi_{1}(1,·))
= \sum_{r \in \Z/\Z}
\chi_{1}(1,r) 1^{1 r + 2 r^{-1}}
= 1 \)