Normalized defining polynomial
\( x^{16} - 8 x^{15} - 12 x^{14} + 224 x^{13} - 182 x^{12} - 2184 x^{11} + 3600 x^{10} + 8312 x^{9} - 19381 x^{8} - 7240 x^{7} + 36768 x^{6} - 14600 x^{5} - 16214 x^{4} + 13904 x^{3} - 2564 x^{2} - 424 x + 127 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[16, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(3761893960837392421076598784=2^{62}\cdot 13^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $52.90$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(416=2^{5}\cdot 13\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{416}(1,·)$, $\chi_{416}(389,·)$, $\chi_{416}(129,·)$, $\chi_{416}(77,·)$, $\chi_{416}(337,·)$, $\chi_{416}(25,·)$, $\chi_{416}(157,·)$, $\chi_{416}(261,·)$, $\chi_{416}(209,·)$, $\chi_{416}(233,·)$, $\chi_{416}(365,·)$, $\chi_{416}(285,·)$, $\chi_{416}(53,·)$, $\chi_{416}(105,·)$, $\chi_{416}(313,·)$, $\chi_{416}(181,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{5490568271} a^{14} - \frac{7}{5490568271} a^{13} - \frac{708359885}{5490568271} a^{12} - \frac{1240408870}{5490568271} a^{11} + \frac{676200516}{5490568271} a^{10} + \frac{1583748912}{5490568271} a^{9} - \frac{207729399}{5490568271} a^{8} - \frac{353800076}{5490568271} a^{7} - \frac{380467942}{5490568271} a^{6} + \frac{164616881}{5490568271} a^{5} - \frac{1685707149}{5490568271} a^{4} - \frac{1814892112}{5490568271} a^{3} - \frac{285968309}{5490568271} a^{2} - \frac{1237800832}{5490568271} a + \frac{562804569}{5490568271}$, $\frac{1}{2542133109473} a^{15} + \frac{224}{2542133109473} a^{14} - \frac{544274620331}{2542133109473} a^{13} - \frac{439399955855}{2542133109473} a^{12} + \frac{1267972572239}{2542133109473} a^{11} - \frac{918365313008}{2542133109473} a^{10} - \frac{611682882965}{2542133109473} a^{9} - \frac{1025660443483}{2542133109473} a^{8} + \frac{1065420483141}{2542133109473} a^{7} - \frac{1218780541547}{2542133109473} a^{6} - \frac{369961259692}{2542133109473} a^{5} - \frac{748100181146}{2542133109473} a^{4} + \frac{552304537786}{2542133109473} a^{3} + \frac{1014345469176}{2542133109473} a^{2} - \frac{1224256361964}{2542133109473} a + \frac{459441951699}{2542133109473}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 294948493.2252423 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_8$ (as 16T5):
| An abelian group of order 16 |
| The 16 conjugacy class representatives for $C_8\times C_2$ |
| Character table for $C_8\times C_2$ |
Intermediate fields
| \(\Q(\sqrt{26}) \), \(\Q(\sqrt{2}) \), \(\Q(\sqrt{13}) \), \(\Q(\sqrt{2}, \sqrt{13})\), \(\Q(\zeta_{16})^+\), 4.4.346112.1, 8.8.119793516544.1, 8.8.61334280470528.1, \(\Q(\zeta_{32})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 13 | Data not computed | ||||||