Normalized defining polynomial
\( x^{16} - 8 x^{15} + 20 x^{14} + 26 x^{12} - 520 x^{11} + 768 x^{10} + 1880 x^{9} - 853 x^{8} - 15304 x^{7} + 3152 x^{6} + 59544 x^{5} + 25482 x^{4} - 175600 x^{3} - 155892 x^{2} + 257304 x + 353263 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(3761893960837392421076598784=2^{62}\cdot 13^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $52.90$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(416=2^{5}\cdot 13\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{416}(1,·)$, $\chi_{416}(259,·)$, $\chi_{416}(129,·)$, $\chi_{416}(337,·)$, $\chi_{416}(339,·)$, $\chi_{416}(25,·)$, $\chi_{416}(363,·)$, $\chi_{416}(155,·)$, $\chi_{416}(131,·)$, $\chi_{416}(209,·)$, $\chi_{416}(233,·)$, $\chi_{416}(235,·)$, $\chi_{416}(27,·)$, $\chi_{416}(51,·)$, $\chi_{416}(105,·)$, $\chi_{416}(313,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{431645485716881} a^{14} - \frac{7}{431645485716881} a^{13} - \frac{109046439768607}{431645485716881} a^{12} - \frac{209012332822029}{431645485716881} a^{11} + \frac{16390871391272}{431645485716881} a^{10} - \frac{36471744194412}{431645485716881} a^{9} + \frac{204744622878570}{431645485716881} a^{8} + \frac{122234712628326}{431645485716881} a^{7} + \frac{84144794347973}{431645485716881} a^{6} + \frac{41268355316721}{431645485716881} a^{5} + \frac{69886043035117}{431645485716881} a^{4} - \frac{207337969943997}{431645485716881} a^{3} - \frac{128311218920400}{431645485716881} a^{2} + \frac{151510306051472}{431645485716881} a - \frac{206357981578696}{431645485716881}$, $\frac{1}{71985086007518527489} a^{15} + \frac{83377}{71985086007518527489} a^{14} - \frac{34151468230874260134}{71985086007518527489} a^{13} + \frac{32929045624997167876}{71985086007518527489} a^{12} + \frac{2739504059989156099}{71985086007518527489} a^{11} + \frac{4083908280933395931}{71985086007518527489} a^{10} - \frac{776850892436282895}{2322099548629629919} a^{9} - \frac{7096577812926008627}{71985086007518527489} a^{8} - \frac{7668986776369852623}{71985086007518527489} a^{7} - \frac{9287310840745614898}{71985086007518527489} a^{6} + \frac{16715152402538023493}{71985086007518527489} a^{5} - \frac{35079440561432843558}{71985086007518527489} a^{4} + \frac{1022467198052359534}{71985086007518527489} a^{3} + \frac{14624826187885392380}{71985086007518527489} a^{2} - \frac{33670145542006896080}{71985086007518527489} a + \frac{22253644722793556875}{71985086007518527489}$
Class group and class number
$C_{9}\times C_{9}$, which has order $81$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 108889.88555195347 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_8$ (as 16T5):
| An abelian group of order 16 |
| The 16 conjugacy class representatives for $C_8\times C_2$ |
| Character table for $C_8\times C_2$ |
Intermediate fields
| \(\Q(\sqrt{26}) \), \(\Q(\sqrt{2}) \), \(\Q(\sqrt{13}) \), \(\Q(\sqrt{2}, \sqrt{13})\), \(\Q(\zeta_{16})^+\), 4.4.346112.1, 8.8.119793516544.1, 8.0.61334280470528.11, 8.0.2147483648.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 13 | Data not computed | ||||||