Properties

Label 16.0.37618939608...8784.1
Degree $16$
Signature $[0, 8]$
Discriminant $2^{62}\cdot 13^{8}$
Root discriminant $52.90$
Ramified primes $2, 13$
Class number $81$ (GRH)
Class group $[9, 9]$ (GRH)
Galois group $C_8\times C_2$ (as 16T5)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![353263, 257304, -155892, -175600, 25482, 59544, 3152, -15304, -853, 1880, 768, -520, 26, 0, 20, -8, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 8*x^15 + 20*x^14 + 26*x^12 - 520*x^11 + 768*x^10 + 1880*x^9 - 853*x^8 - 15304*x^7 + 3152*x^6 + 59544*x^5 + 25482*x^4 - 175600*x^3 - 155892*x^2 + 257304*x + 353263)
 
gp: K = bnfinit(x^16 - 8*x^15 + 20*x^14 + 26*x^12 - 520*x^11 + 768*x^10 + 1880*x^9 - 853*x^8 - 15304*x^7 + 3152*x^6 + 59544*x^5 + 25482*x^4 - 175600*x^3 - 155892*x^2 + 257304*x + 353263, 1)
 

Normalized defining polynomial

\( x^{16} - 8 x^{15} + 20 x^{14} + 26 x^{12} - 520 x^{11} + 768 x^{10} + 1880 x^{9} - 853 x^{8} - 15304 x^{7} + 3152 x^{6} + 59544 x^{5} + 25482 x^{4} - 175600 x^{3} - 155892 x^{2} + 257304 x + 353263 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 8]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(3761893960837392421076598784=2^{62}\cdot 13^{8}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $52.90$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 13$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(416=2^{5}\cdot 13\)
Dirichlet character group:    $\lbrace$$\chi_{416}(1,·)$, $\chi_{416}(259,·)$, $\chi_{416}(129,·)$, $\chi_{416}(337,·)$, $\chi_{416}(339,·)$, $\chi_{416}(25,·)$, $\chi_{416}(363,·)$, $\chi_{416}(155,·)$, $\chi_{416}(131,·)$, $\chi_{416}(209,·)$, $\chi_{416}(233,·)$, $\chi_{416}(235,·)$, $\chi_{416}(27,·)$, $\chi_{416}(51,·)$, $\chi_{416}(105,·)$, $\chi_{416}(313,·)$$\rbrace$
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{431645485716881} a^{14} - \frac{7}{431645485716881} a^{13} - \frac{109046439768607}{431645485716881} a^{12} - \frac{209012332822029}{431645485716881} a^{11} + \frac{16390871391272}{431645485716881} a^{10} - \frac{36471744194412}{431645485716881} a^{9} + \frac{204744622878570}{431645485716881} a^{8} + \frac{122234712628326}{431645485716881} a^{7} + \frac{84144794347973}{431645485716881} a^{6} + \frac{41268355316721}{431645485716881} a^{5} + \frac{69886043035117}{431645485716881} a^{4} - \frac{207337969943997}{431645485716881} a^{3} - \frac{128311218920400}{431645485716881} a^{2} + \frac{151510306051472}{431645485716881} a - \frac{206357981578696}{431645485716881}$, $\frac{1}{71985086007518527489} a^{15} + \frac{83377}{71985086007518527489} a^{14} - \frac{34151468230874260134}{71985086007518527489} a^{13} + \frac{32929045624997167876}{71985086007518527489} a^{12} + \frac{2739504059989156099}{71985086007518527489} a^{11} + \frac{4083908280933395931}{71985086007518527489} a^{10} - \frac{776850892436282895}{2322099548629629919} a^{9} - \frac{7096577812926008627}{71985086007518527489} a^{8} - \frac{7668986776369852623}{71985086007518527489} a^{7} - \frac{9287310840745614898}{71985086007518527489} a^{6} + \frac{16715152402538023493}{71985086007518527489} a^{5} - \frac{35079440561432843558}{71985086007518527489} a^{4} + \frac{1022467198052359534}{71985086007518527489} a^{3} + \frac{14624826187885392380}{71985086007518527489} a^{2} - \frac{33670145542006896080}{71985086007518527489} a + \frac{22253644722793556875}{71985086007518527489}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{9}\times C_{9}$, which has order $81$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $7$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 108889.88555195347 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2\times C_8$ (as 16T5):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
An abelian group of order 16
The 16 conjugacy class representatives for $C_8\times C_2$
Character table for $C_8\times C_2$

Intermediate fields

\(\Q(\sqrt{26}) \), \(\Q(\sqrt{2}) \), \(\Q(\sqrt{13}) \), \(\Q(\sqrt{2}, \sqrt{13})\), \(\Q(\zeta_{16})^+\), 4.4.346112.1, 8.8.119793516544.1, 8.0.61334280470528.11, 8.0.2147483648.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ R ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
2Data not computed
13Data not computed