Normalized defining polynomial
\( x^{16} - 11 x^{14} + 20 x^{12} + 115 x^{10} - 297 x^{8} - 729 x^{6} + 5496 x^{4} + 4993 x^{2} + 2209 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(72399383432805056195395584=2^{16}\cdot 3^{8}\cdot 17^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $41.33$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(204=2^{2}\cdot 3\cdot 17\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{204}(1,·)$, $\chi_{204}(203,·)$, $\chi_{204}(13,·)$, $\chi_{204}(77,·)$, $\chi_{204}(19,·)$, $\chi_{204}(151,·)$, $\chi_{204}(157,·)$, $\chi_{204}(161,·)$, $\chi_{204}(35,·)$, $\chi_{204}(169,·)$, $\chi_{204}(43,·)$, $\chi_{204}(47,·)$, $\chi_{204}(53,·)$, $\chi_{204}(185,·)$, $\chi_{204}(127,·)$, $\chi_{204}(191,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{46092124125911} a^{14} + \frac{21194902595369}{46092124125911} a^{12} + \frac{6329297992440}{46092124125911} a^{10} + \frac{20525806086736}{46092124125911} a^{8} - \frac{14951775338253}{46092124125911} a^{6} - \frac{22365402297117}{46092124125911} a^{4} + \frac{4738039292236}{46092124125911} a^{2} - \frac{21309569198856}{46092124125911}$, $\frac{1}{2166329833917817} a^{15} + \frac{804761012735856}{2166329833917817} a^{13} + \frac{52421422118351}{2166329833917817} a^{11} + \frac{527539171471757}{2166329833917817} a^{9} + \frac{123324597039480}{2166329833917817} a^{7} - \frac{483286643556227}{2166329833917817} a^{5} + \frac{327382908173613}{2166329833917817} a^{3} + \frac{439611672060254}{2166329833917817} a$
Class group and class number
$C_{2}\times C_{2}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 330165.460254 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_8$ (as 16T5):
| An abelian group of order 16 |
| The 16 conjugacy class representatives for $C_8\times C_2$ |
| Character table for $C_8\times C_2$ |
Intermediate fields
| \(\Q(\sqrt{51}) \), \(\Q(\sqrt{17}) \), \(\Q(\sqrt{3}) \), \(\Q(\sqrt{3}, \sqrt{17})\), 4.4.4913.1, 4.4.707472.1, 8.8.500516630784.1, 8.0.33237432513.1, 8.0.105046700288.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{8}$ | R | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.1.0.1}{1} }^{16}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.8.1 | $x^{8} + 28 x^{4} + 144$ | $2$ | $4$ | $8$ | $C_4\times C_2$ | $[2]^{4}$ |
| 2.8.8.1 | $x^{8} + 28 x^{4} + 144$ | $2$ | $4$ | $8$ | $C_4\times C_2$ | $[2]^{4}$ | |
| 3 | Data not computed | ||||||
| 17 | Data not computed | ||||||