Normalized defining polynomial
\( x^{16} - 6 x^{15} + 32 x^{14} - 110 x^{13} + 439 x^{12} - 1250 x^{11} + 4000 x^{10} - 9195 x^{9} + 25370 x^{8} - 47784 x^{7} + 115811 x^{6} - 170636 x^{5} + 371982 x^{4} - 388515 x^{3} + 779262 x^{2} - 435519 x + 838099 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(431533953146964646550390625=3^{8}\cdot 5^{8}\cdot 17^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $46.20$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(255=3\cdot 5\cdot 17\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{255}(1,·)$, $\chi_{255}(196,·)$, $\chi_{255}(134,·)$, $\chi_{255}(76,·)$, $\chi_{255}(16,·)$, $\chi_{255}(149,·)$, $\chi_{255}(151,·)$, $\chi_{255}(89,·)$, $\chi_{255}(166,·)$, $\chi_{255}(104,·)$, $\chi_{255}(106,·)$, $\chi_{255}(239,·)$, $\chi_{255}(179,·)$, $\chi_{255}(121,·)$, $\chi_{255}(59,·)$, $\chi_{255}(254,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{9} - \frac{1}{2} a^{6} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{10} - \frac{1}{2} a^{7} - \frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{11} - \frac{1}{2} a^{8} - \frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{62485422378861066211994309922614986} a^{15} - \frac{11073328978532777113928198053345223}{62485422378861066211994309922614986} a^{14} + \frac{4980209845197566291944824051405881}{31242711189430533105997154961307493} a^{13} + \frac{1047192353030113998380314424807098}{31242711189430533105997154961307493} a^{12} + \frac{25260357289969062764394391319042915}{62485422378861066211994309922614986} a^{11} - \frac{13404368108086888847221598926799184}{31242711189430533105997154961307493} a^{10} - \frac{622755134151681018294989969141253}{2403285476110041008153627304715961} a^{9} - \frac{19587533753081436362868083869740649}{62485422378861066211994309922614986} a^{8} + \frac{13426590312789899810469879007484612}{31242711189430533105997154961307493} a^{7} - \frac{8263540162632786334606102687471095}{31242711189430533105997154961307493} a^{6} - \frac{17067630231946755769270533548762725}{62485422378861066211994309922614986} a^{5} - \frac{13568868542319050186792039612187610}{31242711189430533105997154961307493} a^{4} + \frac{4114500197560367625668534004188380}{31242711189430533105997154961307493} a^{3} + \frac{9585204617408514450909706062547057}{62485422378861066211994309922614986} a^{2} - \frac{1155527490396789597225687861781891}{2403285476110041008153627304715961} a - \frac{18974543803297872046579357065575031}{62485422378861066211994309922614986}$
Class group and class number
$C_{816}$, which has order $816$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3640.012213375973 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_8$ (as 16T5):
| An abelian group of order 16 |
| The 16 conjugacy class representatives for $C_8\times C_2$ |
| Character table for $C_8\times C_2$ |
Intermediate fields
| \(\Q(\sqrt{-255}) \), \(\Q(\sqrt{17}) \), \(\Q(\sqrt{-15}) \), \(\Q(\sqrt{-15}, \sqrt{17})\), 4.4.4913.1, 4.0.1105425.1, 8.0.1221964430625.2, \(\Q(\zeta_{17})^+\), 8.0.20773395320625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | R | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{8}$ | R | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| $17$ | 17.8.7.3 | $x^{8} - 17$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |
| 17.8.7.3 | $x^{8} - 17$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ | |