Normalized defining polynomial
\( x^{16} + 4 x^{14} - 27 x^{12} - 44 x^{10} + 304 x^{8} - 1320 x^{6} + 5093 x^{4} + 14296 x^{2} + 10201 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(723177258444187191407017984=2^{32}\cdot 17^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $47.72$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(136=2^{3}\cdot 17\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{136}(1,·)$, $\chi_{136}(69,·)$, $\chi_{136}(13,·)$, $\chi_{136}(15,·)$, $\chi_{136}(81,·)$, $\chi_{136}(19,·)$, $\chi_{136}(21,·)$, $\chi_{136}(87,·)$, $\chi_{136}(89,·)$, $\chi_{136}(33,·)$, $\chi_{136}(101,·)$, $\chi_{136}(43,·)$, $\chi_{136}(111,·)$, $\chi_{136}(83,·)$, $\chi_{136}(59,·)$, $\chi_{136}(127,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{4} a^{12} + \frac{1}{4}$, $\frac{1}{404} a^{13} - \frac{34}{101} a^{11} - \frac{19}{101} a^{9} + \frac{23}{101} a^{7} - \frac{13}{101} a^{5} - \frac{25}{101} a^{3} + \frac{105}{404} a$, $\frac{1}{106934489978116} a^{14} + \frac{2979271606241}{106934489978116} a^{12} - \frac{6546518867105}{26733622494529} a^{10} - \frac{8590981813554}{26733622494529} a^{8} + \frac{8370602232817}{26733622494529} a^{6} - \frac{5203225098104}{26733622494529} a^{4} + \frac{30764870783529}{106934489978116} a^{2} - \frac{450690051659}{1058757326516}$, $\frac{1}{106934489978116} a^{15} + \frac{33844479161}{53467244989058} a^{13} + \frac{12246423678554}{26733622494529} a^{11} - \frac{6738156492151}{26733622494529} a^{9} - \frac{5128553680262}{26733622494529} a^{7} + \frac{5913726830314}{26733622494529} a^{5} + \frac{1119665641081}{106934489978116} a^{3} - \frac{15216201657353}{53467244989058} a$
Class group and class number
$C_{2}\times C_{6}\times C_{6}$, which has order $72$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 103646.40189541418 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_8$ (as 16T5):
| An abelian group of order 16 |
| The 16 conjugacy class representatives for $C_8\times C_2$ |
| Character table for $C_8\times C_2$ |
Intermediate fields
| \(\Q(\sqrt{2}) \), \(\Q(\sqrt{17}) \), \(\Q(\sqrt{34}) \), \(\Q(\sqrt{2}, \sqrt{17})\), 4.4.4913.1, 4.4.314432.1, 8.8.98867482624.1, 8.0.1680747204608.1, 8.0.105046700288.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{8}$ | R | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.1.0.1}{1} }^{16}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.16.3 | $x^{8} + 2 x^{6} + 6 x^{4} + 4 x^{2} + 8 x + 28$ | $4$ | $2$ | $16$ | $C_4\times C_2$ | $[2, 3]^{2}$ |
| 2.8.16.3 | $x^{8} + 2 x^{6} + 6 x^{4} + 4 x^{2} + 8 x + 28$ | $4$ | $2$ | $16$ | $C_4\times C_2$ | $[2, 3]^{2}$ | |
| $17$ | 17.8.7.3 | $x^{8} - 17$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |
| 17.8.7.3 | $x^{8} - 17$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |