Normalized defining polynomial
\( x^{16} - 6 x^{15} + 24 x^{14} - 68 x^{13} + 229 x^{12} - 610 x^{11} + 1652 x^{10} - 3427 x^{9} + 8268 x^{8} - 14574 x^{7} + 31149 x^{6} - 43150 x^{5} + 84686 x^{4} - 84235 x^{3} + 155680 x^{2} - 83057 x + 153851 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(36093282486485263170800449=11^{8}\cdot 17^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $39.57$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $11, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(187=11\cdot 17\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{187}(1,·)$, $\chi_{187}(67,·)$, $\chi_{187}(76,·)$, $\chi_{187}(144,·)$, $\chi_{187}(21,·)$, $\chi_{187}(87,·)$, $\chi_{187}(89,·)$, $\chi_{187}(155,·)$, $\chi_{187}(32,·)$, $\chi_{187}(98,·)$, $\chi_{187}(100,·)$, $\chi_{187}(166,·)$, $\chi_{187}(43,·)$, $\chi_{187}(111,·)$, $\chi_{187}(120,·)$, $\chi_{187}(186,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{9} - \frac{1}{2} a^{6} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{10} - \frac{1}{2} a^{7} - \frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{13802} a^{14} - \frac{981}{13802} a^{13} + \frac{827}{13802} a^{12} - \frac{6297}{13802} a^{11} - \frac{5805}{13802} a^{10} + \frac{1801}{13802} a^{9} + \frac{1997}{13802} a^{8} + \frac{1817}{13802} a^{7} - \frac{2085}{13802} a^{6} + \frac{4409}{13802} a^{5} - \frac{725}{13802} a^{4} + \frac{753}{13802} a^{3} + \frac{15}{206} a^{2} - \frac{6795}{13802} a - \frac{6563}{13802}$, $\frac{1}{9372523636405670211392627698} a^{15} + \frac{135318817825228358218445}{4686261818202835105696313849} a^{14} - \frac{2153054006965375201896716463}{9372523636405670211392627698} a^{13} + \frac{2029247652046227814676377107}{9372523636405670211392627698} a^{12} + \frac{1437420464009289871097819769}{4686261818202835105696313849} a^{11} + \frac{710576144967424822656874753}{9372523636405670211392627698} a^{10} - \frac{3597385380185689874084263927}{9372523636405670211392627698} a^{9} - \frac{1837200686840751521445445980}{4686261818202835105696313849} a^{8} + \frac{3302069108083373722027226635}{9372523636405670211392627698} a^{7} + \frac{315003385576434820840899731}{9372523636405670211392627698} a^{6} - \frac{1206279126078223146203943910}{4686261818202835105696313849} a^{5} - \frac{4617775304147148139314078497}{9372523636405670211392627698} a^{4} - \frac{2704874032501126325708396837}{9372523636405670211392627698} a^{3} - \frac{919389224458360855686647018}{4686261818202835105696313849} a^{2} + \frac{573790673476742018139897935}{9372523636405670211392627698} a + \frac{1667815491161000476499243274}{4686261818202835105696313849}$
Class group and class number
$C_{17}\times C_{17}$, which has order $289$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3640.01221338 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_8$ (as 16T5):
| An abelian group of order 16 |
| The 16 conjugacy class representatives for $C_8\times C_2$ |
| Character table for $C_8\times C_2$ |
Intermediate fields
| \(\Q(\sqrt{-187}) \), \(\Q(\sqrt{17}) \), \(\Q(\sqrt{-11}) \), \(\Q(\sqrt{-11}, \sqrt{17})\), 4.4.4913.1, 4.0.594473.1, 8.0.353398147729.1, \(\Q(\zeta_{17})^+\), 8.0.6007768511393.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/13.2.0.1}{2} }^{8}$ | R | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 11 | Data not computed | ||||||
| 17 | Data not computed | ||||||