Normalized defining polynomial
\( x^{16} + 16 x^{14} + 104 x^{12} + 352 x^{10} + 660 x^{8} + 672 x^{6} + 336 x^{4} + 64 x^{2} + 2209 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(7205759403792793600000000=2^{64}\cdot 5^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $35.78$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(160=2^{5}\cdot 5\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{160}(1,·)$, $\chi_{160}(139,·)$, $\chi_{160}(141,·)$, $\chi_{160}(79,·)$, $\chi_{160}(81,·)$, $\chi_{160}(19,·)$, $\chi_{160}(21,·)$, $\chi_{160}(159,·)$, $\chi_{160}(99,·)$, $\chi_{160}(101,·)$, $\chi_{160}(39,·)$, $\chi_{160}(41,·)$, $\chi_{160}(119,·)$, $\chi_{160}(121,·)$, $\chi_{160}(59,·)$, $\chi_{160}(61,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{21} a^{8} + \frac{8}{21} a^{6} - \frac{1}{21} a^{4} - \frac{5}{21} a^{2} + \frac{2}{21}$, $\frac{1}{987} a^{9} + \frac{386}{987} a^{7} - \frac{295}{987} a^{5} + \frac{373}{987} a^{3} - \frac{313}{987} a$, $\frac{1}{987} a^{10} + \frac{10}{987} a^{8} - \frac{114}{329} a^{6} - \frac{34}{141} a^{4} - \frac{407}{987} a^{2} + \frac{5}{21}$, $\frac{1}{987} a^{11} - \frac{254}{987} a^{7} - \frac{83}{329} a^{5} - \frac{9}{47} a^{3} + \frac{404}{987} a$, $\frac{1}{987} a^{12} - \frac{19}{987} a^{8} - \frac{49}{141} a^{6} - \frac{424}{987} a^{4} + \frac{72}{329} a^{2} + \frac{10}{21}$, $\frac{1}{987} a^{13} + \frac{82}{987} a^{7} - \frac{107}{987} a^{5} + \frac{394}{987} a^{3} + \frac{445}{987} a$, $\frac{1}{987} a^{14} - \frac{4}{329} a^{8} + \frac{128}{987} a^{6} + \frac{488}{987} a^{4} - \frac{24}{329} a^{2} - \frac{4}{21}$, $\frac{1}{987} a^{15} - \frac{25}{141} a^{7} - \frac{13}{141} a^{5} + \frac{152}{329} a^{3} + \frac{4}{987} a$
Class group and class number
$C_{34}$, which has order $34$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 15753.9498624 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_8$ (as 16T5):
| An abelian group of order 16 |
| The 16 conjugacy class representatives for $C_8\times C_2$ |
| Character table for $C_8\times C_2$ |
Intermediate fields
| \(\Q(\sqrt{-10}) \), \(\Q(\sqrt{2}) \), \(\Q(\sqrt{-5}) \), \(\Q(\sqrt{2}, \sqrt{-5})\), \(\Q(\zeta_{16})^+\), 4.0.51200.2, 8.0.10485760000.2, 8.0.1342177280000.1, \(\Q(\zeta_{32})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 5 | Data not computed | ||||||