Normalized defining polynomial
sage: x = polygen(QQ); K.<a> = NumberField(x^16 + 1)
gp: K = bnfinit(x^16 + 1, 1)
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1]);
\(x^{16} + 1\)
sage: K.defining_polynomial()
gp: K.pol
magma: DefiningPolynomial(K);
Invariants
Degree: | $16$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
| |
Signature: | $[0, 8]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
| |
Discriminant: | \(18446744073709551616\)\(\medspace = 2^{64}\) | sage: K.disc()
gp: K.disc
magma: Discriminant(Integers(K));
| |
Root discriminant: | $16.00$ | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
| |
Ramified primes: | $2$ | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(Integers(K)));
| |
$|\Gal(K/\Q)|$: | $16$ | ||
This field is Galois and abelian over $\Q$. | |||
Conductor: | \(32=2^{5}\) | ||
Dirichlet character group: | $\lbrace$$\chi_{32}(1,·)$, $\chi_{32}(3,·)$, $\chi_{32}(5,·)$, $\chi_{32}(7,·)$, $\chi_{32}(9,·)$, $\chi_{32}(11,·)$, $\chi_{32}(13,·)$, $\chi_{32}(15,·)$, $\chi_{32}(17,·)$, $\chi_{32}(19,·)$, $\chi_{32}(21,·)$, $\chi_{32}(23,·)$, $\chi_{32}(25,·)$, $\chi_{32}(27,·)$, $\chi_{32}(29,·)$, $\chi_{32}(31,·)$$\rbrace$ | ||
This is a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$
sage: K.integral_basis()
gp: K.zk
magma: IntegralBasis(K);
Class group and class number
Trivial group, which has order $1$
sage: K.class_group().invariants()
gp: K.clgp
magma: ClassGroup(K);
Unit group
sage: UK = K.unit_group()
magma: UK, f := UnitGroup(K);
Rank: | $7$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
| |
Torsion generator: | \( a \) (order $32$) ![]() | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
| |
Fundamental units: | \( a^{12} - a^{4} - 1 \), \( a^{4} + a^{2} + 1 \), \( a^{12} - a^{6} + a^{2} \), \( a^{2} + a + 1 \), \( a^{11} + a^{6} + a \), \( a^{13} - a^{10} + a^{7} \), \( a^{14} - a^{10} + a^{8} - a^{4} - a \) ![]() | sage: UK.fundamental_units()
gp: K.fu
magma: [K!f(g): g in Generators(UK)];
| |
Regulator: | \( 15753.9498624 \) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
|
Class number formula
Galois group
$C_2\times C_8$ (as 16T5):
sage: K.galois_group(type='pari')
gp: polgalois(K.pol)
magma: GaloisGroup(K);
An abelian group of order 16 |
The 16 conjugacy class representatives for $C_8\times C_2$ |
Character table for $C_8\times C_2$ |
Intermediate fields
\(\Q(\sqrt{-1}) \), \(\Q(\sqrt{2}) \), \(\Q(\sqrt{-2}) \), \(\Q(\zeta_{8})\), \(\Q(\zeta_{16})^+\), 4.0.2048.2, \(\Q(\zeta_{16})\), 8.0.2147483648.1, \(\Q(\zeta_{32})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
gp: idealfactors = idealprimedec(K, p); \\ get the data
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
magma: idealfactors := Factorization(p*Integers(K)); // get the data
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
2 | Data not computed |