Normalized defining polynomial
\( x^{16} - x^{15} + 23 x^{14} - 16 x^{13} + 247 x^{12} - 128 x^{11} + 1478 x^{10} - 512 x^{9} + 5217 x^{8} - 1206 x^{7} + 10340 x^{6} - 1072 x^{5} + 10480 x^{4} - 960 x^{3} + 3968 x^{2} + 512 x + 256 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(970664662927461034900129=7^{8}\cdot 17^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $31.56$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(119=7\cdot 17\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{119}(64,·)$, $\chi_{119}(1,·)$, $\chi_{119}(69,·)$, $\chi_{119}(8,·)$, $\chi_{119}(76,·)$, $\chi_{119}(13,·)$, $\chi_{119}(15,·)$, $\chi_{119}(83,·)$, $\chi_{119}(36,·)$, $\chi_{119}(104,·)$, $\chi_{119}(106,·)$, $\chi_{119}(43,·)$, $\chi_{119}(111,·)$, $\chi_{119}(50,·)$, $\chi_{119}(118,·)$, $\chi_{119}(55,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a$, $\frac{1}{4} a^{10} - \frac{1}{4} a^{9} - \frac{1}{4} a^{8} - \frac{1}{4} a^{6} - \frac{1}{2} a^{4} + \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{8} a^{11} - \frac{1}{8} a^{10} - \frac{1}{8} a^{9} - \frac{1}{8} a^{7} - \frac{1}{4} a^{5} + \frac{1}{8} a^{3} + \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{16} a^{12} - \frac{1}{16} a^{11} - \frac{1}{16} a^{10} + \frac{7}{16} a^{8} - \frac{1}{2} a^{7} - \frac{1}{8} a^{6} - \frac{1}{2} a^{5} + \frac{1}{16} a^{4} - \frac{3}{8} a^{3} - \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{32} a^{13} - \frac{1}{32} a^{12} - \frac{1}{32} a^{11} + \frac{7}{32} a^{9} - \frac{1}{4} a^{8} + \frac{7}{16} a^{7} + \frac{1}{4} a^{6} + \frac{1}{32} a^{5} - \frac{3}{16} a^{4} + \frac{3}{8} a^{3} - \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{64} a^{14} - \frac{1}{64} a^{13} - \frac{1}{64} a^{12} + \frac{7}{64} a^{10} - \frac{1}{8} a^{9} + \frac{7}{32} a^{8} - \frac{3}{8} a^{7} - \frac{31}{64} a^{6} - \frac{3}{32} a^{5} - \frac{5}{16} a^{4} + \frac{3}{8} a^{3} - \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{233166472395434373248} a^{15} + \frac{1744111799362360603}{233166472395434373248} a^{14} + \frac{2059134807952905427}{233166472395434373248} a^{13} + \frac{820749644659564679}{58291618098858593312} a^{12} - \frac{14445605618290027281}{233166472395434373248} a^{11} - \frac{167366262782780091}{58291618098858593312} a^{10} - \frac{17787808042702612481}{116583236197717186624} a^{9} - \frac{1554317510717170887}{29145809049429296656} a^{8} + \frac{31767959797613682337}{233166472395434373248} a^{7} - \frac{22633920275511305981}{116583236197717186624} a^{6} - \frac{11047626730501128435}{58291618098858593312} a^{5} - \frac{4596926853070110713}{14572904524714648328} a^{4} + \frac{1674656964873030791}{7286452262357324164} a^{3} - \frac{409451417165024872}{1821613065589331041} a^{2} - \frac{396373735951031421}{1821613065589331041} a + \frac{869706355501611714}{1821613065589331041}$
Class group and class number
$C_{3}\times C_{15}$, which has order $45$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3640.01221338 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_8$ (as 16T5):
| An abelian group of order 16 |
| The 16 conjugacy class representatives for $C_8\times C_2$ |
| Character table for $C_8\times C_2$ |
Intermediate fields
| \(\Q(\sqrt{-119}) \), \(\Q(\sqrt{17}) \), \(\Q(\sqrt{-7}) \), \(\Q(\sqrt{-7}, \sqrt{17})\), 4.4.4913.1, 4.0.240737.1, 8.0.57954303169.1, 8.0.985223153873.1, \(\Q(\zeta_{17})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{8}$ | R | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 7 | Data not computed | ||||||
| 17 | Data not computed | ||||||