Normalized defining polynomial
\( x^{16} - 6 x^{15} + 40 x^{14} - 152 x^{13} + 705 x^{12} - 2142 x^{11} + 7860 x^{10} - 19323 x^{9} + 60042 x^{8} - 119410 x^{7} + 322825 x^{6} - 498338 x^{5} + 1197274 x^{4} - 1299079 x^{3} + 2829154 x^{2} - 1635129 x + 3329789 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2859655432078149808865465089=17^{14}\cdot 19^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $52.00$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $17, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(323=17\cdot 19\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{323}(1,·)$, $\chi_{323}(322,·)$, $\chi_{323}(132,·)$, $\chi_{323}(134,·)$, $\chi_{323}(77,·)$, $\chi_{323}(208,·)$, $\chi_{323}(18,·)$, $\chi_{323}(151,·)$, $\chi_{323}(94,·)$, $\chi_{323}(229,·)$, $\chi_{323}(172,·)$, $\chi_{323}(305,·)$, $\chi_{323}(115,·)$, $\chi_{323}(246,·)$, $\chi_{323}(189,·)$, $\chi_{323}(191,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{9} - \frac{1}{2} a^{6} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{10} - \frac{1}{2} a^{7} - \frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2626} a^{14} + \frac{14}{101} a^{13} + \frac{227}{2626} a^{12} - \frac{441}{2626} a^{11} + \frac{12}{101} a^{10} + \frac{957}{2626} a^{9} - \frac{87}{2626} a^{8} - \frac{328}{1313} a^{7} + \frac{577}{2626} a^{6} - \frac{83}{2626} a^{5} - \frac{453}{1313} a^{4} + \frac{1303}{2626} a^{3} - \frac{937}{2626} a^{2} - \frac{81}{1313} a - \frac{389}{2626}$, $\frac{1}{11345321689924520647363319372085902} a^{15} + \frac{285844173486812169806227218852}{5672660844962260323681659686042951} a^{14} + \frac{2420197997392174927215380534630961}{11345321689924520647363319372085902} a^{13} + \frac{2478625408084655032564336104390199}{11345321689924520647363319372085902} a^{12} + \frac{1243343185253452754263613163861724}{5672660844962260323681659686042951} a^{11} - \frac{4727466501356135661851083523540301}{11345321689924520647363319372085902} a^{10} - \frac{3074301274879329509847836259832149}{11345321689924520647363319372085902} a^{9} - \frac{2341290193967720233244012795584612}{5672660844962260323681659686042951} a^{8} + \frac{4520085226394908847807814009546847}{11345321689924520647363319372085902} a^{7} + \frac{4631101981051867996762071347469731}{11345321689924520647363319372085902} a^{6} + \frac{2350096542599862699671699802637765}{5672660844962260323681659686042951} a^{5} + \frac{83828282140663911560209504471581}{872717053071116972874101490160454} a^{4} + \frac{422829664333857838302916067769969}{872717053071116972874101490160454} a^{3} + \frac{1296784378327281706686082044853482}{5672660844962260323681659686042951} a^{2} - \frac{3580660173079134256203961755068495}{11345321689924520647363319372085902} a + \frac{1494293629905034420966102384668426}{5672660844962260323681659686042951}$
Class group and class number
$C_{5}\times C_{520}$, which has order $2600$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3640.01221338 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_8$ (as 16T5):
| An abelian group of order 16 |
| The 16 conjugacy class representatives for $C_8\times C_2$ |
| Character table for $C_8\times C_2$ |
Intermediate fields
| \(\Q(\sqrt{-323}) \), \(\Q(\sqrt{17}) \), \(\Q(\sqrt{-19}) \), \(\Q(\sqrt{17}, \sqrt{-19})\), 4.4.4913.1, 4.0.1773593.2, 8.0.3145632129649.3, 8.0.53475746204033.2, \(\Q(\zeta_{17})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{8}$ | R | R | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $17$ | 17.8.7.3 | $x^{8} - 17$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |
| 17.8.7.3 | $x^{8} - 17$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ | |
| $19$ | 19.8.4.1 | $x^{8} + 7220 x^{4} - 27436 x^{2} + 13032100$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 19.8.4.1 | $x^{8} + 7220 x^{4} - 27436 x^{2} + 13032100$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |